
RESEARCH ARTICLE ENGINEERING

Active matter as the underpinning agency for extraordinary
sensitivity of biological membranes to electric fields
Anand Mathewa ID and Yashashree Kulkarnia,1 ID

Edited by Yonggang Huang, Northwestern University–Evanston, Glencoe, IL; received December 30, 2024; accepted February 19, 2025

Interaction of electric fields with biological cells is indispensable for many physiological
processes. Thermal electrical noise in the cellular environment has long been considered
as the minimum threshold for detection of electrical signals by cells. However, there is
compelling experimental evidence that the minimum electric field sensed by certain cells
and organisms is many orders of magnitude weaker than the thermal electrical noise
limit estimated purely under equilibrium considerations. We resolve this discrepancy
by proposing a nonequilibrium statistical mechanics model for active electromechanical
membranes and hypothesize the role of activity in modulating the minimum electrical
field that can be detected by a biological membrane. Active membranes contain proteins
that use external energy sources to carry out specific functions and drive the membrane
away from equilibrium. The central idea behind our model is that active mechanisms,
attributed to different sources, endow the membrane with the ability to sense and
respond to electric fields that are deemed undetectable based on equilibrium statistical
mechanics. Our model for active membranes is capable of reproducing different
experimental data available in the literature by varying the activity. Elucidating how
active matter can modulate the sensitivity of cells to electric signals can open avenues
for a deeper understanding of physiological and pathological processes.

active matter | polarization | fluctuations | Langevin equation

The study of the interaction of biological cells with electric fields has become increasingly
important owing to their ubiquity in physiology, diagnostics, and therapeutics. The
role of electric fields spans cell physiology (1) and signal transduction (2) to targeted
drug delivery (3), tissue engineering (4), and bioelectronic devices (5, 6). These electric
fields could either be generated by cell processes such as ion transport across the cell
membrane, or could be external stimuli and include a wide range of effects depending on
the intensity and frequency of the fields. When cells are exposed to sufficient amplitudes
the permeability of the membrane is increased (7). This process, known as reversible
electroporation, is temporary, thus allowing cells to reestablish their membrane integrity
after some time, and is a valuable tool in biotechnology and medicine, where it facilitates
the delivery of otherwise impermeable molecules, such as in electrochemotherapy (8).
In contrast, stronger fields (higher pulses of higher amplitude) lead to irreversible
electroporation (9, 10), a state where the cell damage is beyond repair and subsequently
leads to cell death. Irreversible electroporation has shown promise in cancer treatment
(11, 12), especially for solid tumors such as those in the pancreas, prostate, and liver (13).
Broadly speaking, the interactions of electromagnetic fields with biological systems have
been of long-standing interest due to their role in various phenomena such as animal prey
sensing and navigation, embryonic development, and wound repair, medical diagnosis,
and therapy (14).

A key question that arises in this context is: What is the minimum electric field that a
cell can detect and respond to? Despite the extensive exploration of cellular responses to
electric fields at high intensities, the minimum electric field a cell or its membrane can
detect has relatively remained unexplored experimentally (15–18). Theoretical studies,
however, have provided significant insights into this phenomenon. Following ideas from
classical signal detection theory, it has long been understood that a cell can detect or
respond to an electric signal that exceeds the electrical noise associated with thermal
fluctuations and inherent electrical activity within the cellular environment. There have
been many pioneering studies on estimating this threshold by calculating the thermal
electrical noise for a cell. For instance, Adair (19) estimated this threshold to be 0.02 V for
a frequency band of 100 Hz, based on a small section of the membrane with a thickness
of 5 nm. Alternatively, another theoretical approach involves considering the membrane
as a linear dielectric surface in thermal equilibrium with its surroundings, yielding an
estimated noise threshold of 0.36 V for a membrane of the same thickness, with a length
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Fig. 1. Schematic illustrating that active membranes can detect electrical
signals weaker than the thermal electrical noise.

of 150 μm (20). Astonishingly, experimental studies reveal that
certain large mammalian cells exhibit extraordinary sensitivity
to electric fields and can detect signals that are many orders
of magnitude lower than these theoretical predictions for the
thermal noise limit (21) (Fig. 1).

Several efforts have been made to address these inconsistencies.
Stochastic resonance has been proposed as a mechanism by
which cells may detect signals much lower than the thermal
noise limit and has generated significant discussion (21). More
recently, Ahmadpoor et al. (20) introduced a model that accounts
for the nonlinear dielectric behavior of the membranes. Using
variational perturbation methods, they estimated the minimum
electrical field threshold detectable by cells. This approach bridges
the gap between the theoretical estimates for thermal electrical
noise limit and experimental observations, albeit, qualitatively.
Although the inclusion of nonlinearity reduces the threshold
values dramatically compared to earlier linearized theories,
the electric noise limits obtained were still much larger than
experimental measurements.

In this work, we present the viewpoint that all prior the-
oretical studies, despite being profoundly insightful, relied on
equilibrium considerations. In other words, the membranes
considered in these studies exhibit fluctuations solely from
thermal vibrations of the membrane molecules, rendering them
effectively “passive” or “dead” in a biological sense. However,
real biological membranes are far more dynamic, incorporating
the influence of active agents and processes. Recent work has
led to a growing consensus that biological membranes are not
merely “passive” surfaces displaying only thermal fluctuations.
Instead, they are “active” structures that use internal or external
energy sources to perform distinct biophysical functions (22, 23).
These active membranes incorporate specialized proteins, such as
ion channels, that facilitate the transport of molecules such as
ions, lipids, or proteins, thereby contributing to various essential
physiological processes. As these proteins carry out their roles,
they use energy fueled by chemical reactions—such as actin
polymerization or Adenosine triphosphate (ATP) hydrolysis—
as well as by mechanical stresses, electric fields, or even light (24)
and consequently drive the membrane away from equilibrium.
Several recent studies have modeled the role of activity using
nonequilibrium statistical mechanics approaches in various phys-
iological processes and phenomena such as active vesicles (25, 26),
vesicle size distribution (27, 28), active Brownian particles (29),
active filaments (30), and active membranes in electrolytes (31).

Taking inspiration from these studies, we develop a theoretical
model based on nonequilibrium statistical mechanics framework

to examine the role of activity in modulating the sensitivity
of active membranes to electric fields. We hypothesize that
cell membranes can invoke energy-driven active mechanisms to
detect electric signals that are weaker than the theoretical thermal
electrical noise limit. To model these driven mechanisms, we
move beyond the limitation of equilibrium statistical mechanics
and propose a nonequilibrium statistical mechanics approach for
the time evolution of polarization in the active membrane in a
dynamic environment. This approach enables us to calculate
the fluctuations in polarization driven by active components
and hence examine the effect of activity on the minimum
electric field detected by active membranes. Our hypothesis is
consistent with prior experimental studies which have speculated
that active mechanisms such as ion channels could play a critical
role in imparting extraordinary sensitivity to receptor cells in
certain fishes and large mammals (18, 21). Our work provides
an analytical model to quantitatively demonstrate the role of
activity in detection of electric fields by biological membranes
and supports these experimental observations.

The key contributions of this work are summarized below:

• We present a theory for active electromechanical membranes
based on nonequilibrium statistical mechanics by proposing an
overdamped Langevin equation for the time evolution of mem-
brane polarization, analogous to the well-established evolution
equation for the out-of-plane deformation of the membrane.

• We demonstrate that the dynamic analysis based on the
overdamped Langevin equation for polarization in a passive
membrane in equilibrium yields the same results for steady-
state fluctuation spectra as the conventional equilibrium sta-
tistical mechanics approach, say using equipartition of energy.

• We elucidate that activity, incorporated into the Langevin
equation through the Hamiltonian and as noise, can endow
the membrane with the ability to modulate its sensitivity to
electric fields as needed and in particular sense electric signals
that are deemed undetectable based purely under equilibrium
considerations.

• We present numerical results to illustrate that the theory is
capable of capturing experimental measurements for electric
fields sensed by various cell types which are far weaker than
the theoretical thermal noise limit.

1. Fluctuations of Electromechanical
Membranes

In order to estimate the minimum electric field detected by a
membrane, we need to determine the fluctuations in the electrical
field in the membrane as a representative value for the electrical
noise in the system. We consider the biological membrane as a
linear dielectric and employ tools from statistical mechanics to
calculate the fluctuations of polarization in the membrane which
can then be used to derive the fluctuations in the electric field.

The study of electromechanical coupling in biological context
has garnered significant interest (20, 32–36). However, these
studies relied on employing equilibrium statistical mechanics to
study the fluctuations of polarization in membranes. Since active
proteins drive a membrane away from equilibrium, accounting
for activity requires a dynamic analysis of the fluctuating mem-
brane. In Section 1.1, we first present all the elements of the
dynamic theory in the case of passive membranes in equilibrium,
and then extend it to active membranes in Section 1.2. We note
that in our formulation, the equations for polarization and the
mechanical deformation are uncoupled since we do not consider
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flexoelectricity. Hence, we do not present the theory for the out-
of-plane deformation of the membrane which is well established
(22, 24, 27, 37, 38) but focus only on the temporal evolution of
the polarization.

1.1. Fluctuations in Polarization for Passive Membranes. Con-
sider a dielectric membrane defined over the domain S = (0, L)2

with thickness d (d � L). The membrane is characterized by
the state variables: (P(r), h(r)), where P(r) represents the out-of-
plane polarization area density, and h(r) denotes the out-of-plane
displacement of the mid-plane of the membrane specified by r =
(x, y). We neglect the in-plane components of the polarization
and focus solely on the polarization in the direction perpendicular
to the membrane for the sake of simplicity. Using the Monge
representation for membrane deformation under small gradient
approximation, we postulate the Hamiltonian describing the
elastic and electrical energies of the membrane to be

Hp[P, h] =
∫

S

(
1
2
�b(Δh(r))2 +

1
2
�(∇h(r))2 +

1
2
a|P(r)|2

)
ds .

[1]

Here, �b is the bending modulus of the membrane. Thus,
the first term describes the well-known Canham–Helfrich–
Evans bending energy for lipid bilayers (39–41). The second
term represents the energy penalty for areal changes due to
deformation, and � is the associated Lagrange multiplier, also
known as the surface tension (42–44). The third term accounts
for the electrostatic contribution with a =

(
1

�−�0

)
1
d , where � is

the permittivity of the linear dielectric membrane. For a rigorous
formulation, we should have included the energy associated
with the electric field induced by the polarization. However, as
demonstrated in prior studies (32, 45), the contribution of this
nonlocal term can be incorporated within the parameter a in the
polarization term for biological membranes with permittivity �.
We should also have added a flexoelectric electromechanical
coupling term in the Hamiltonian. However, as demonstrated by
Ahmadpoor et al. (20), the effect of flexoelectricity is negligible
in the present context, and thus has not been included.

To derive the overdamped Langevin equation for polarization,
we consider the membrane to be in a diffusive regime which is
a reasonable assumption for a cellular environment. Then, the
time rate of change of polarization is proportional to the driving
force F ,

∂P(r, t)
∂t

= �F , [2]

where � is a proportionality constant. Polarization in a lipid
bilayer arises from two phenomena—ion distribution and
dipole reorientation. When ions accumulate on either side
of the membrane, they establish an electric double layer,
contributing significantly to the membrane’s polarization (46).
Additionally, since approximately 80% of the membrane lipids
are zwitterionic, characterized by balanced positive and negative
charges, these lipids tend to align with the electric field direction,
further polarizing the membrane (47). Thus, one contribution to
the driving force is the electric field across the membrane which
is expressed as the variational derivative of the Hamiltonian of
the system with respect to polarization.

In Brownian dynamics, another contribution to the driving
force is a fluctuating force or noise. In the context of polarization,
this noise arises from the fluctuations in the electric potential
across the membrane due to the thermal fluctuations of molecules

causing random movement of the dipoles. We denote this as the
polarization noise, �P . It is reasonable to assume this noise to be
uncorrelated in space and time. Mathematically, we have

〈�P(t)�P(t ′)〉 = BP�(r− r′)�(t − t ′) , [3]

where BP is the strength of the fluctuating electric potential and
we will determine it using the fluctuation–dissipation theorem.
We can now write the overdamped Langevin equation for
membrane polarization as

∂P(t)
∂t

= �
(
−
�H[P, h]
�P

+ �P(t)
)

. [4]

The proportionality constant, � , is a function of the electrical
properties of the membrane. From the RC circuit equivalence of
the membranes, we propose that the value of � depends on the
resistance (R), capacitance (C ), permittivity (�0), and thickness
of the membrane. Thus, � = 1

aRC is a dimensionally consistent
value for the constant. It is convenient to work with the Fourier
transform of the equation which is obtained as

∂Pq(t)
∂t

= �q
[
−aPq(t) + �Pq (t)

]
, [5]

where

Pq =
1
L 2

∫
S
dr P(r)e−iq·r and P(r) =

∑
q

Pqeiq·r. [6]

Solving Eq. 5 and taking the limit t → ∞, we avoid artifacts
due to initial conditions and evaluate the fluctuation spectrum
for polarization in steady state as (48):

〈|Pq|2〉 = �2
q lim
t→∞

∫ t

0
ds1
∫ t

0
ds2〈�Pq (s1)�Pq′(s2)〉e

!P
q (s1+s2−2t)

[7]

Here, !P
q = �qa. Substituting the correlation Eq. 3 in Eq. 7, we

get,

〈|Pq|2〉 = �2
q
BP
!P
q
. [8]

According to the fluctuation–dissipation theorem, at t → ∞,
the autocorrelation function for polarization must be equal
to that derived from equilibrium statistical mechanics using
equipartition of energy leading to the relation BP = kBT /L2�q.
Thus, the fluctuation spectrum for polarization of a passive
membrane is obtained as

〈|Pq|2〉 =
kBT
L2a

. [9]

which is identical to the expression obtained from the
equilibrium statistical mechanics approach (32) as ensured by the
fluctuation–dissipation theorem (48). We also observe that the
autocorrelation for polarization for a passive membrane in steady
state depends neither on the wavevector nor the coefficient � .

1.2. Fluctuations in Polarization for Active Membranes. Active
membranes differ fundamentally from passive membranes due
to their dynamic and interactive nature, driven by the activity of
active agents embedded within the membrane. While passive
membranes respond to external stimuli through basic elastic
deformations and electrostatic effects, active membranes exhibit
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additional complexity arising from molecular processes and
energy-consuming mechanisms. To extend the Langevin equa-
tion derived in the previous section for active electromechanical
membranes, we hypothesize that the effect of active mechanisms
can be modeled through two distinct contributions.

First, we note that active membranes are highly heterogeneous
and densely populated with proteins, many of these being
active proteins that can exert their influence through long-
range interactions. Ion pumps and channels, which are known
to be active proteins (24), engage in transporting ions across
the membrane, actively maintaining concentration gradients
(49, 50) and causing membrane conformational changes through
interaction with other proteins (51). These ion movement and
protein–protein interactions further lead to changes in membrane
polarization. We incorporate this nonlocal effect by adding
a contribution to the Hamiltonian which is proportional to
the spatial gradient of the polarization. Thus, the modified
Hamiltonian, for active membranes becomes

Ha[P, h] =
∫

S

(
1
2
�b(Δh(r))2 +

1
2
�(∇h(r))2 +

1
2
a|P(r)|2

+
1
2
�|∇P(r)|2

)
ds [10]

Second, under the influence of a fluctuating external electric
field, proteins can undergo structural rearrangements that are
often linked to the proteins’ electric dipoles, which reorient in
response to the external field (52). Additionally, integral and
peripheral proteins are asymmetrically distributed and oriented
within the membrane (53). These proteins carry positive and
negative charges, creating an electric dipole that fluctuates with
the external electric field. As a result, the interplay between
protein conformational changes, electric dipole fluctuations, and
ion transport mechanisms contributes to the dynamic regulation
of the potential across the membrane (47). All these effects are
captured in the Langevin equation by adding an active noise
term, �Pq . The active polarization noise is considered to be
uncorrelated in space and exponentially correlated in time. This
is a reasonable assumption inspired by prior theoretical studies
on the mechanical response of active membranes (26, 27, 37).
Thus, the active polarization force is assumed to have zero mean
and the following form for the autocorrelation function:

〈�Pq (t)�Pq′(t
′)〉 = ΓPq�(q − q′) exp

(
−
|t − t ′|
�P

)
, [11]

where �P is the correlation time associated with the active process.
The constant ΓPq is the amplitude of active noise or in this case the
squared of the electric field generated by the active components
of the membrane.

Using the modified Hamiltonian from Eq. 10, we derive the
Langevin equation for an active membrane in Fourier space as

∂Pq(t)
∂t

= −!qPq(t) + �q�Pq (t) + �q�Pq (t) , [12]

where, !q = �q
(
a + �q2). Solving Eq. 12 and taking the time

limit t → ∞, we can evaluate the fluctuation spectrum for
polarization as before as

〈|Pq|2〉 = �2
q lim
t→∞

∫ t

0
ds1
∫ t

0
ds2
(
〈�Pq (s1)�Pq′(s2)〉

+〈�Pq (t)�Pq′(t
′)〉
)
e!q(s1+s2−2t). [13]

Substituting the noise correlation and evaluating the integral
we get the fluctuations in polarization in an active membrane,

〈|Pq|2〉 =
kBT

L2 (a + �q2)
+

ΓPq�2
q

!q

(
!q + 1

�P

) . [14]

This is a key result of our paper. First, it reveals that active
noise enhances the polarization fluctuations. This is consistent
with prior observations that active noise increases mechanical
fluctuations (27, 37). Second, it shows that active mechanisms
that contribute through the spatial gradient of polarization
decrease the polarization fluctuations. In subsequent sections,
we will find that it is the polarization gradient term that plays
a role in determining the minimum threshold for detection of
electric fields.

2. Fluctuations in Electric Field

We now proceed to use the statistical mechanics results from
the previous section to estimate the root mean square of the
electric field and the frequency-dependent electrical noise. The
latter is needed to compare our results with measurements since
experimental data reported for electrical sensitivity is found to be
dependent on the frequency of the applied fields. Here, for the
sake of brevity, we summarize the general approach and the final
expression presented by Ahmadpoor et al. (20) for deriving the
frequency-dependent electrical noise and refer the reader to their
paper for details.

To calculate the electric field generated by a polarized mem-
brane, we apply the Maxwell’s equation under nonconducting
boundary conditions as

div
(
−�0∇�+

P
d
�(z)ez

)
= 0, [15]

where,

�(z) =

{
1 if z ∈

[
−

d
2 ,

d
2

]
0 otherwise ,

[16]

� is the potential across the membrane and d is the membrane
thickness. The solution can be conveniently obtained in Fourier
space and the final results for fluctuations of electric field are
found to be insensitive to the boundary conditions (20). Under
conducting boundary conditions, the autocorrelation function
for the potential is obtained as

〈V 2
〉 =

1
�2

0

∫ qmax

qmin

〈|Pq|2〉. [17]

Eq. 17 is a significant result by Ahmadpoor et al. (20) as
it provides a way to express electrical noise in terms of the
fluctuation spectra for polarization of the membrane. Using Eq. 9
for a passive membrane or Eq. 14 for an active membrane yields
the threshold electrical field in either case.

Although Eq. 17 suffices to estimate the electrical noise limit,
we note that the result does not depend on the frequency of
the applied field. However, in order to draw connection with
experimental measurements, we require estimates for frequency-
dependent values for the electric noise limit.

To this end, we first calculate the power spectrum of the
fluctuating electric field. The power spectrum or spectral density
for a random field is the ensemble average of the time average
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Fig. 2. Calculated thermal noise in the presence of time-dependent fields.
The relaxation time is considered to be 1 ms.

of the power dissipation per unit frequency bandwidth (54).
Assuming the relaxation process for the random field to be
an exponential decay with � being the relaxation time, the
correlation function can be expressed as

C(�) = 〈V 2
〉e−t/� . [18]

Then, the well-known Wiener–Khinchin theorem relates the
correlation function and the power spectrum for a random
process as (54)

G(�) = 4
∫
∞

0
C(�) cos(2��t) dt =

4〈V 2
〉�

1 + (2���)2 . [19]

G(�) is equivalent to the Nyquist noise for a resister and is
obtained by integrating it over the frequency (20, 54). Let
us assume that the frequency we are interested in is �1. Then,
integrating the above equation from 0 to �1 yields the frequency-
dependent autocorrelation function for the potential as

〈V 2
〉� =

2〈V 2
〉

�
tan−1(

��1

500
) [20]

Here, the relaxation time for biological membranes is assumed to
be 1 millisecond (20). Fig. 2 shows the variation of the root mean
square of the electrical noise obtained in Eq. 20 with frequency.
It is worth emphasizing that at very low frequencies in the range
0 to 10 Hz, the noise threshold 〈V 2

〉� can be much smaller
than 〈V 2

〉.

3. Numerical Results and Experimental
Validation

To understand the effect of the two different active mechanisms
considered in this study, we present numerical results for the
variation of 〈V 2

〉with � andΓPq . For the purpose of the numerical
calculations, we assume the membrane length to be L = 150 nm
and membrane thickness as d = 5 nm. Temperature is taken to
be 300 K, and the membrane permittivity is taken as � = 2�0.
For the active noise term, the relaxation time for the active process
is taken to be �P = 5 ms and the coefficient � is estimated as
� = 1

aRC with R = 2.12×106Ω ·m and C = 0.54×10−6 F/m
for the membrane.

Fig. 3 shows that an increase in active noise increases the
threshold electrical noise. Here, the value of � is held fixed and

Fig. 3. Electrical noise for active membranes as a function of the active
noise strength (ΓPq) shown by the blue curve. The value of noise of the
passive membrane is 0.36 V (red curve). � is set to a�2 = 2,252.82 F−1m2 with
� = 10 nm.

chosen to be on the order of a�2, where � is regarded as the
interprotein distance for the passive case and estimated to be
around 10 nm (20). Thus, it is clear that active noise is not
the key player in the heightened sensitivity of certain biological
membranes to very weak electric fields. In contrast, Fig. 4 shows
that the threshold electrical noise decreases dramatically with
increasing �. This quantitatively demonstrates that the nonlocal
effect induced by active proteins such as ion channels through
the spatial gradient of polarization could be an underpinning
mechanism that active membranes employ to reduce the electrical
noise and exhibit extraordinary sensitivity to far weaker electric
fields as necessary.

Finally, we compare our results with different experimental
studies from literature. For the sake of illustration, we select two
studies by Clearly et al. (17) and McLeod et al. (16) respectively
which investigated the sensitivity of different mammalian cells to
extremely weak electric fields at different frequencies. Since active
noise increases fluctuations, which in turn results in larger thermal
electrical noise, we set ΓPq to be zero. Using Eqs. 14 and 17, we
estimate the value of � by fitting to the experimental values.
As seen in Table 1, the minimum electric field estimated by the
linear dielectric model based on equilibrium statistical mechanics
(which yields a frequency-independent value of 0.36 V) is orders
of magnitude larger than experimental measurements. Although

Fig. 4. Electrical noise for active membranes as a function of � with (green
curve) and without (blue curve) active noise. The value of noise of the passive
membrane is 0.36 V (red curve).
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Table 1. Comparison of our results with experimental values and values from prior modeling studies available in
the literature

Experimental values Linear dielectric model Nonlinear dielectric model Present model
Frequency (Hz) (V/cm) (V/cm) (V/cm) (20) (V/cm) � (F−1m2)

1 0.6 (17) 4.56× 104 100 0.6 2.49× 1015

0.1 300 (16) 1.44× 104 30 300 1.64× 108

1 2.1 (16) 4.56× 104 100 2.1 2.03× 1014

101 1.5 (16) 1.44× 105 300 1.5 3.95× 1015

102 30 (16) 4.30× 105 900 30 8.89× 1013

103 600 (16) 6.83× 105 1,400 600 5.56× 1011

The last column shows the values of � required to obtain the experimental values. ΓPq is taken to be zero. The numbers within parentheses indicate citations to prior works.

the nonlinear dielectric model (20) based on equilibrium thermal
fluctuations performs significantly better than the simplistic
linear model, the threshold values are still substantially larger
(by an order of magnitude) from experimental values. In striking
contrast, incorporating active mechanisms in the theory for
polarization of membranes enables the present model to approach
experimental values for extremely low electric fields sensed by cells
simply by varying the activity.

4. Conclusion

In summary, we investigated the role of activity in the sensitivity
of biological membranes (and cells) to electric fields by way of
a nonequilibrium statistical mechanics–based model. Our study
reveals that activity, attributed to different sources, can endow the
membranes with the ability to sense and respond to electric fields
that are far weaker than the thermal noise limit estimated from
purely equilibrium statistical mechanics. Our model for active
membranes is capable of reproducing different experimental
data available in the literature by varying the activity and thus

provides a possible resolution for a long-standing discrepancy
between theoretical studies and experimental measurements
for the minimum electric field that can be detected by cells.
As part of future study, we intend to enrich the model to
incorporate electromechanical coupling through flexoelectricity
and investigate its role in the interaction of active membranes
with electric fields. Understanding electromechanical biological
phenomena that may be impacted by increased fluctuations due
to active noise in polarization is another interesting direction
of study. Elucidating how cells can modulate their interaction
with electric signals through activity can proffer deeper insights
into physiological processes and open avenues for applications in
biotechnology and medicine.
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this work.
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