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A B S T R A C T

Vesicles are the primary modes of communication and transport in cell biology. Conventional
wisdom based on thermodynamic equilibrium says that vesicles should have a certain minimum
size and size distribution dictated by their thermal fluctuations. However, there is compelling
experimental evidence that vesicles exhibit a vast variety of size distributions depending on their
formation process and function which cannot be explained by equilibrium statistical mechanics
alone. We investigate a non-equilibrium statistical mechanics-based model to understand the
role of active membranes on the size distribution of vesicles. Active membranes contain proteins
that use external energy sources, such as adenosine triphosphate hydrolysis, and are known to
exert forces on the membrane during their activity to carry out different biological functions.
The central idea behind our model is that activity, attributed to different sources, impacts
vesicle fluctuations in two opposing ways — by active noise which enhances fluctuations,
and membrane tension which decreases fluctuations. The interplay of active fluctuations and
active tension endows the vesicles with the ability to achieve size distributions that are deemed
improbable by equilibrium statistical mechanics. We show that our model for active vesicles,
based on linearized curvature elasticity, can reproduce different experimental data for vesicle
size distributions available in the literature by varying the activity. Elucidating how these
vesicles achieve such diverse size distributions can open avenues for a deeper understanding
of physiological and pathological processes and help design vesicles for diagnostics and drug
delivery applications.

. Introduction

Vesicles are key players in myriads of physiological processes that are essential for homeostasis, ranging from intracellular
ransport, and storage to intercellular signaling, trafficking, and communication (Alberts et al., 2002). Extracellular vesicles are
ow known to play important roles even in diseases such as heart disease, neurodegenerative diseases, and cancer (Kumar et al.,
024). Exosomes, a particular class of vesicles, are being studied for various clinical applications including therapeutic agents,
ehicles for drug delivery and diagnostics, and tissue regeneration and repair mechanisms (Di Bella, 2022).

Vesicles are essentially small structures consisting of an outer membrane made of a lipid bilayer enclosing a fluid-filled volume
ontaining cellular material such as proteins, lipids, nucleic acids like DNA and RNA, nutrients, and waste products (Alberts et al.,
002). The vesicular membrane often contains embedded proteins or protein complexes that are involved in different functions
ncluding transmembrane transport, membrane fusion, and vesicle stability. Depending on the function of the vesicles, they can vary
ignificantly in size, ranging from a few nanometers to several micrometers. Studies on extracellular vesicles classify them based

∗ Corresponding author.
E-mail address: ykulkarni@uh.edu (Y. Kulkarni).
vailable online 22 June 2024
022-5096/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

ttps://doi.org/10.1016/j.jmps.2024.105749
eceived 3 May 2024; Received in revised form 17 June 2024; Accepted 19 June 2024

https://www.elsevier.com/locate/jmps
https://www.elsevier.com/locate/jmps
mailto:ykulkarni@uh.edu
https://doi.org/10.1016/j.jmps.2024.105749
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2024.105749&domain=pdf
https://doi.org/10.1016/j.jmps.2024.105749


Journal of the Mechanics and Physics of Solids 191 (2024) 105749S. Ramesh and Y. Kulkarni

v
t
i
e
f
b
s
t
p
f

A
p
y
t
a
o
u
o
c
t
u
o

f
f
s
o
b
f
m
t
t
t
v
l

a
m
e
a
f
t
o

2

m
t
f
2
m
o

on size and functions with exosomes being the smallest vesicles ranging from 30–150 nm and microsomes ranging from 100 nm to
a micron (Di Bella, 2022; Ginini et al., 2019; Ronquist, 2019). Significant research has focused on liposomes which are artificial
vesicles that serve as models to study membrane properties, and processes found in real cells and are promising vehicles for targeted
drug delivery applications. These synthetic vesicles span a wide size range from tens of nanometers for small unilamellar vesicles to
micrometers for giant unilamellar vesicles with the preparation method influencing the final size distribution obtained (R Mozafari
and Linder, 2011; Zhang and Sun, 2021).

This considerable variation in sizes of vesicles found in nature as well as synthesized in the laboratory begs the question: how do
esicles control their sizes based on their biological function? Numerous experimental studies in cell biology have been dedicated
o addressing this question. Owing to the crucial role of vesicles, the field is vast, undoubtedly, and we only cite a few studies that
nspired the proposed theoretical study (Coldren et al., 2003; Menger et al., 1989; Men et al., 2016; Korgel et al., 1998; Kanno
t al., 2002; Xu et al., 2013). Using their method for the synthesis of polymersomes, a certain class of vesicles, Menger et al. (1989)
ound that the size distribution of small unilamellar vesicles was affected by the presence of calcium ions, pH, and ionic strength
ut remained insensitive to the sonication method and duration. In contrast, in a more recent study, Men et al. (2016) show that the
ize and distribution of the polymersomes are controlled by the solvent content and sonication time. Korgel et al. (1998) observe
hat unilamellar vesicles formed by extrusion can exhibit non-Gaussian size distributions and the average size is controlled by the
ore size used for extrusion. A common observation in all these experimental results is that vesicle distribution has three important
eatures – a certain lower cutoff vesicle size, a mean vesicle size, and the standard deviation of the bell-shaped curve.

The equilibrium size distribution of vesicles has also been studied theoretically over decades (Helfrich, 1986; Kleinert, 1986;
hmadpoor and Sharma, 2016; Huang et al., 2017). Pioneering work by Helfrich (1986) proposed a method to estimate the
robability distribution of vesicles based on equilibrium statistical mechanics taking into account the thermal fluctuations. Thirty
ears later, Ahmadpoor and Sharma (2016) enriched Helfrich’s model with nonlinear curvature elasticity to demonstrate that for
ensionless membranes, nonlinear curvature elasticity was important to capture the threshold size below which vesicles do not exist
nd attributed it to entropic effects. Indeed, Helfrich’s model, based on linearized curvature elasticity, cannot capture this threshold
r minimum vesicle size in the absence of surface tension and spontaneous curvature. In another recent study, Huang et al. (2017)
sed nonlinear curvature elasticity to study the dependence of membrane size, spontaneous curvature, and membrane stiffness
n vesicle formation and size distribution. As expected for these theories based on thermal fluctuations, the only parameters that
an change the vesicle size distribution are bending modulus of the membrane, the number of amphiphilic molecules comprising
he vesicle, and ambient temperature which in turn affects the entropic interactions. Although these studies have provided
nprecedented insights into vesicle size distribution, we find it rather perplexing that the vast variation in vesicle size distribution
bserved in nature cannot be explained solely on the basis of equilibrium statistical mechanics.

In recent years, there has been a growing consensus that biological membranes need not be ‘‘passive’’ entities exhibiting thermal
luctuations only but are rather ‘‘active’’ and harness energy from intrinsic or extrinsic energy sources to execute specific biophysical
unctions (Ramaswamy and Rao, 2001; Ramaswamy, 2010; Bowick et al., 2022; Lee et al., 2017). These active membranes contain
pecial proteins that aid in the trafficking of molecules such as ions, lipids, or proteins, across the membranes as part of a variety
f vital physiological processes. As these active proteins perform their functions, they exert forces on the membrane that could
e generated by a chemical reaction such as actin polymerization, adenosine triphosphate hydrolysis, mechanical stresses, electric
ields or directly from light (Turlier and Betz, 2018). Several theoretical studies have demonstrated that vesicles made of active
embranes indeed exhibit enhanced fluctuations (Loubet et al., 2012; Iyer et al., 2023; Kulkarni, 2023). These observations present

he enticing possibility that vesicular membranes may in fact be active and that activity plays a more pronounced role in governing
he size distribution of vesicles. This is schematically represented by Fig. 1 which illustrates how probability distribution is related
o fluctuations of vesicles and that different degrees of fluctuations can lead to vesicles of different sizes. In contrast to passive
esicles which can exist only within a certain size range, active vesicles can achieve smaller sizes by reducing the fluctuations and
arger sizes by increasing the fluctuations, thus explaining the size distribution paradox.

Here, we present a continuum mechanics model for active vesicles to explain the aforementioned size distribution paradox. Since
ctivity drives vesicles away from equilibrium, we first perform a dynamic analysis of fluctuating vesicles to derive their statistical
echanics results in the presence of active forces. The steady state fluctuation spectra is then used to estimate the effective free

nergy and the vesicle size distribution by taking into account thermal and active fluctuations. We work with the hypothesis that
ctivity, attributed to different sources, impacts membrane fluctuations in two opposing ways — as active noise which enhances
luctuations, and as membrane tension which decreases fluctuations. Our model shows that the interplay of active noise and active
ension can explain how active vesicles achieve size distributions that are deemed improbable for passive vesicles. To the best of
ur knowledge, this is the first model that can reproduce a wide variety of published experimental results.

. Mechanics of active vesicles

Biological membranes and vesicles have been studied extensively using continuum mechanics and equilibrium statistical
echanics treatments (Lipowsky, 1991; Safran, 1994; Nelson et al., 2004; Steigmann, 2018; Seifert, 1999). Studies on equilibrium

hermal fluctuations of soft matter have led to remarkable insights into a variety of problems such as entropic interactions between
luctuating membranes (Helfrich, 1978; Gompper and Kroll, 1989; Freund, 2012; Hanlumyuang et al., 2014; Grasinger and Sharma,
024), effect of edges (Biria et al., 2013; Zelisko et al., 2017), pore formation in membranes (Farago and Santangelo, 2005),
embrane inclusions and interactions (Santangelo and Farago, 2007; Carotenuto et al., 2020; Liao and Purohit, 2021), stability
2

f membranes (Zhong-can and Helfrich, 1989; Givli et al., 2012; Deseri et al., 2016), electromechanical coupling (Liu and Sharma,
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Fig. 1. Schematic showing the probability distribution of fluctuating vesicles of different sizes. Contrary to the vast variation in vesicles sizes found in nature,
equilibrium statistical mechanics dictates that vesicles should exist within a certain size range based on their thermal fluctuations. We demonstrate that active
vesicles may access their own energy source to circumvent equilibrium considerations and achieve desired size distributions by modulating their fluctuations,
thus explaining the size distribution paradox.

2013; Nguyen et al., 2013; Grasinger et al., 2021; Khandagale et al., 2024), active filaments (Liao et al., 2020), and statistical
mechanics of vesicles (Helfrich, 1986; Milner and Safran, 1987; Kleinert, 1986; Schneider et al., 1984; Seifert, 1999; Lomholt,
2006) among many others.

Below, we summarize the general formulation for deriving the equations of motion for passive vesicles to build context and then
present our theory for active vesicles. For a vesicle in static equilibrium (in the absence of thermal fluctuations) the minimization
of the potential energy yields the classical shape equation (Biria et al., 2013). For a vesicle in thermal equilibrium, the Hamiltonian
is used to derive the probability distribution function or the equipartition theorem is used directly to yield the fluctuation spectra
for the vesicle (Helfrich, 1986). In contrast, an active vesicle is not in thermal equilibrium, by definition, and hence requires a
dynamic analysis of the fluctuating vesicle to account for the viscous dissipation due to the embedding fluid. This is achieved by a
hydrodynamics treatment of the fluid surrounding the vesicle (Seifert, 1999; Arroyo and DeSimone, 2009).

2.1. Passive vesicles

From a mechanics perspective, membranes are considered elastic sheets that are resistant to in-plane deformations but can bend
easily due to out-of-plane deformations (Phillips et al., 1998). Let S be the surface of a fluctuating quasi-spherical vesicle with mean
radius 𝑟0, defined as S ∶= {𝐑 ∈ R3 ∶ |𝐑| = 𝑟0}. Consider a small perturbation of the surface S to S𝜀 which takes a point on S with
position vector 𝐑 to 𝐑𝜀,

𝐑𝜀 = 𝐑 + 𝜀𝐮 (1)

with

𝐮 = 𝐮𝑡 + 𝑈𝐧 = 𝑢𝛼𝐚𝛼 + 𝑈𝐧, 𝛼 = 1, 2 (2)

where 𝐧 is a unit normal field on surface S, 𝑈 (𝜃, 𝜙) is the normal variation and 𝑢𝛼 are the tangential variations along directions 𝐚𝛼
in the tangent plane. The total potential energy,  , is expressed as (Biria et al., 2013)

 = ∫S
(𝜓 + 𝜎) 𝑑S , (3)

where 𝜓 is the elastic energy density, 𝜎 is the so-called surface tension, and S is the surface of the fluctuating membrane.
Mathematically, 𝜎 is the Lagrange multiplier associated with the energy penalty for areal changes due to deformation (Safran,
1994; Nelson et al., 2004; Steigmann, 2018; Phillips et al., 1998). Linearized curvature elasticity describes the potential energy
𝜓 = 𝜓̄(𝐻,𝐾) by the celebrated Helfrich–Canham–Evans Hamiltonian (Canham, 1970; Helfrich, 1973; Evans, 1974) as

𝜓̄(𝐻,𝐾) = 1𝜅(2𝐻 −𝐻 )2 + 𝜅̄(𝐾 −𝐾 ) , (4)
3
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where 𝜅 and 𝜅̄ are the bending moduli that represent the energetic costs associated with changes in the mean curvature 𝐻 , and the
aussian curvature 𝐾, respectively. 𝐻0 and 𝐾0 denote the corresponding spontaneous curvatures. In linearized curvature elasticity,
ssuming no topological changes and spontaneous curvatures, the potential energy of the membrane reduces to

𝜓̄(𝐻) = 1
2
𝜅(2𝐻)2. (5)

Then, the variational derivative of the potential energy with respect to 𝑈 is derived as (Biria et al., 2013)

𝑈 = 2𝜅𝛥𝑆𝐻 − 2𝐻 𝜎 (6)

here 𝛥𝑆 is the surface Laplacian (Kulkarni, 2023; Biria et al., 2013). Normalizing 𝑈 with respect to the mean radius 𝑟0 by defining
dimensionless variable 𝑢(𝜃, 𝜙) = 𝑈 (𝜃, 𝜙)∕𝑟0, we can expand 𝐻 in terms of 𝑢 as follows (Helfrich, 1986),

𝐻 = 1
𝑟0

[

−1 + 𝑢 + 1
2
𝛥𝑢 − 𝑢2 − 𝑢𝛥𝑢

]

(7)

while keeping terms only up to quadratic in 𝑢. Here, 𝛥 is the normalized surface Laplacian with the following expression in spherical
coordinates,

𝛥 = 1
sin 𝜃

𝜕
𝜕𝜃

(

sin 𝜃 𝜕
𝜕𝜃

)

+ 1
sin2 𝜃

𝜕2

𝜕𝜙2
(8)

The equations of motion for a fluctuating vesicle in dynamic equilibrium with the ambient fluid have been derived before and
he details can be found in many works (Cai and Lubensky, 1994; Seifert, 1999; Arroyo and DeSimone, 2009; Kulkarni, 2023). The
entral idea is to solve the Stokes equation for the embedding fluid and establish force balance at the interface of the fluid and the
esicle membrane. We report the resulting governing equation here:

𝜂
𝛤𝓁
𝑢̇𝓁,𝑚(𝑡) = − 𝜅

𝑟30
𝐸𝓁 𝑢𝓁,𝑚 + 𝜉𝑡ℎ𝓁,𝑚(𝑡) , (9)

where

𝐸𝓁 = (𝓁 + 2)(𝓁 − 1) [𝓁(𝓁 + 1) + 𝜎̄] , (10)

and

𝛤𝓁 =
𝓁(𝓁 + 1)

4𝓁3 + 6𝓁2 − 1
. (11)

Eq. (9) is the classical over-damped Langevin equation in spherical coordinates for a quasi-spherical vesicle of mean radius 𝑟0.
̄ = 𝜎𝑟20∕𝜅 is the dimensionless surface tension and 𝜂 is the viscosity of the embedding fluid. The normal displacement of the vesicle
membrane is expressed in terms of spherical harmonics as

𝑢(𝜃, 𝜙) =
𝓁𝑚𝑎𝑥
∑

𝓁≥0

𝓁
∑

𝑚=−𝓁
𝑢𝓁,𝑚𝑌𝓁,𝑚(𝜃, 𝜙) (12)

where 𝑢𝓁,−𝑚 = 𝑢∗𝓁,𝑚 since 𝑢(𝜃, 𝜙) is real; 𝑌𝓁,𝑚 are separable in terms of Legendre polynomials, 𝑃𝑚𝓁 (𝜃), as

𝑌𝓁,𝑚(𝜃, 𝜙) = 𝑃𝑚𝓁 (𝜃)𝑒𝑖𝑚𝜙 , (13)

and satisfy the eigenvalue equation,

𝛥𝑌𝓁,𝑚 = −𝓁(𝓁 + 1)𝑌𝓁,𝑚 . (14)

Since there are no topological changes in the problem of vesicle size distribution, the Hamiltonian in Eq. (5) is assumed to
depend only on the mean curvature here. 𝜉𝑡ℎ𝓁,𝑚(𝑡) denoting the thermal noise is uncorrelated in space and time and satisfies the
fluctuation–dissipation theorem,

⟨𝜉𝑡ℎ𝓁,𝑚(𝑡)⟩ = 0 , (15)

⟨𝜉𝑡ℎ𝓁,𝑚(𝑡)𝜉
𝑡ℎ
𝓁′ ,𝑚′ (𝑡′)∗⟩ = 2𝜂

𝑘𝐵𝑇
𝑟30

1
𝛤𝓁
𝛿𝓁𝓁′𝛿𝑚𝑚′𝛿(𝑡 − 𝑡′) , (16)

Here, 𝑘𝐵 is the Boltzmann constant and 𝑇 is the ambient temperature. 𝛿𝑖𝑗 is the Kronecker delta and 𝛿(𝑡) is the Dirac delta function.
For vesicles exhibiting thermal fluctuations only, the dynamical analysis yields the same result for the fluctuation spectra as obtained
from equilibrium statistical mechanics (Helfrich, 1986; Seifert, 1999; Kulkarni, 2023):

⟨|𝑢𝓁𝑚|
2
⟩ =

𝑘𝐵𝑇
𝜅𝐸𝓁

. (17)

2.2. Active vesicles

The framework outlined above has been extended to active membranes and vesicles in prior studies. In Section 2.2.1, we
summarize some of these studies which incorporate activity through a noise term. In Section 2.2.2, we propose an additional
(and distinct) contribution through membrane tension. Section 2.2.3 presents the equations of motion for active vesicles under
the influence of both active noise and active tension.
4
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2.2.1. Active noise
Prior studies have argued that active membrane proteins exert random forces on the membrane during their activity and thereby

ead to non-thermal fluctuations in addition to thermal fluctuations (Prost and Bruinsma, 1996; Ramaswamy et al., 2000; Loubet
t al., 2012). These enhanced fluctuations have indeed been observed in experiments and considered signatures of activity (Turlier
nd Betz, 2018). Several studies have incorporated this activity by appending Eq. (9) with an active noise, denoted by 𝜉𝑎𝓁,𝑚(𝑡). Based

on experimental evidence, the active noise is assumed to be uncorrelated in space but has an exponentially decaying correlation in
time (Loubet et al., 2012),

⟨𝜉𝑎𝓁,𝑚(𝑡)⟩ = 0 , (18)

⟨𝜉𝑎𝓁,𝑚(0)𝜉
𝑎
𝓁,𝑚(𝑡)

∗
⟩ = 𝜒𝑎𝑥𝓁 𝛿𝓁𝓁′𝛿𝑚𝑚′ exp

[

−
|𝑡|
𝜏𝑎

]

, (19)

where 𝜒𝑎 is the amplitude of the active noise, and 𝜏𝑎 is the characteristic correlation time of the active process. 𝑥𝓁 is a function of
he wave number based on the nature of the activity. By spherical symmetry, it is a function of 𝓁 only. It is important to emphasize
hat active noise, when appended to Eq. (9) only increases the fluctuations. As will become evident in the next section where we
escribe the vesicle size distribution model, larger fluctuations yield larger vesicle sizes (Kulkarni, 2023). Thus, we argue that active
oise alone does not explain the diverse size distributions found in nature.

.2.2. Active tension
In this work, we propose that active forces may modify the membrane fluctuations in a distinct way (than noise) which is

ncorporated through the membrane tension. To motivate this idea, we make two observations. First, consider a given vesicle
luctuating about a mean radius 𝑟0. It is well-known that there will be a certain excess area that will determine how much the
embrane can fluctuate. This areal constraint is used to determine the surface tension of the membrane, the Lagrange multiplier in
q. (3) (Helfrich, 1986; Seifert, 1999). Thus, physically, the higher the surface tension, the lesser the (taut) membrane can fluctuate.
tudies (Loubet et al., 2012; Girard et al., 2005) have shown that activity enhances the excess area of the membrane and in turn
educes the surface tension. This has been demonstrated by showing that active noise has a contribution to the surface tension
hrough the areal constraint (Kulkarni, 2023). In other words, activity from a given source appears in the fluctuation spectra of
vesicle directly through the noise and indirectly by modifying the surface tension. However, our calculations reveal that for a

iven amplitude of the noise, the contribution to the fluctuations through the surface tension is much smaller than the contribution
hrough noise directly. Hence, simply adding active noise only increases the fluctuations. Second, there is an emerging viewpoint
n experimental studies that cells can indeed control their membrane tension by various means such as active forces applied by the
ytoskeleton (Roffay et al., 2021; Maitra et al., 2014) and transmembrane flux of solutes (Saric and Freeman, 2021). Another recent
tudy reported that changes in cholesterol can impact the membrane tension in vesicles (Biswas et al., 2019). Inspired by these
bservations, we propose that activity, attributed to different sources, impacts fluctuations through noise and tension separately.

.2.3. Model for active vesicles
To incorporate the contributions from active noise and active tension separately in the theoretical framework for vesicles, we

irst append Eq. (3) with an active tension, denoted by 𝜎𝑎,

 = ∫S
(𝜓 + 𝜎 + 𝜎𝑎) 𝑑S . (20)

he introduction of this new tension does not impact the derivation of the governing equation but modifies the coefficient given in
q. (10) as

𝐸𝑎𝓁 = (𝓁 + 2)(𝓁 − 1)
[

𝓁(𝓁 + 1) + 𝜎̄ + 𝜎̄𝑎
]

, (21)

with superscript 𝑎 in 𝐸𝑎𝓁 denoting ‘‘active’’ and 𝜎̄𝑎 = 𝜎𝑎𝑟20∕𝜅 being the non-dimensional active tension. Then, the over-damped
Langevin equation for an active vesicle can be written as

𝜂
𝛤𝓁
𝑢̇𝓁,𝑚(𝑡) = − 𝜅

𝑟30
𝐸𝑎𝓁 𝑢𝓁,𝑚 + 𝜉𝑡ℎ𝓁,𝑚(𝑡) + 𝜉

𝑎
𝓁,𝑚(𝑡) . (22)

Assuming steady state, from Eqs. (22) and (19), the fluctuation spectra for a fluctuating active vesicle is derived as (Kulkarni, 2023)

⟨|𝑢𝓁𝑚|
2
⟩ =

𝑘𝐵𝑇
𝜅𝐸𝑎𝓁

(

1 + 𝜒𝑎
𝑥𝓁
𝐸𝑎𝓁

)

, (23)

where

𝜒𝑎 = 𝜒𝑎
𝑟60

𝑘𝐵𝑇𝜅
, (24)

Eqs. (21)–(23) are the key results of this work. They summarize the governing equations and the statistical mechanical results based
on the dynamical analysis of a quasi-spherical vesicle with active noise and active tension.
5
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3. Size distribution of active vesicles

In this section, we apply our statistical mechanics results derived in Section 2 to study vesicle size distribution. We first present
elfrich’s theory for estimating size distribution of vesicles in equilibrium. This theory relates the probability distribution for vesicles

o the fluctuation spectra the vesicles through an effective free energy that takes into account the entropic effects due to fluctuations.
n order to derive an explicit expression for this free energy and hence the probability distribution, we have to use the expressions
or the fluctuation spectra derived in Section 2 for passive and active vesicles, that is, Eqs. (17) and (23) respectively.

According to Helfrich (1986), the probability distribution for a vesicle consisting of 𝑁 amphiphilic molecules in equilibrium
with free energy 𝐹 is estimated as

𝑤(𝑁) = 𝐴 exp(−𝐹∕𝑘𝐵𝑇 ) (25)

where 𝐴 is determined by normalizing the probability distribution function using ∫ ∞
0 𝑤(𝑁) 𝑑𝑁 = 1. The free energy of a non-

fluctuating spherical vesicle of radius 𝑟0 is 𝐹 = 𝜇𝑁 + 8𝜋𝜅. The first term is the chemical contribution to the energy assuming that
the vesicle is made of 𝑁 amphiphilic molecules and the chemical potential is 𝜇. The second term is the contribution from bending
energy with mean curvature 𝐻 = 1∕𝑟0 and the total surface area 4𝜋𝑟20. To account for entropic effects, Helfrich proposed an effective
free energy for a fluctuating vesicle by replacing the actual bending modulus with the effective bending modulus that takes into
account the fluctuations:

𝐹 = 𝜇𝑁 + 8𝜋𝜅eff , (26)

where 𝜅eff is the bending modulus renormalized due to fluctuations of the membrane. For tensionless membranes with linearized
curvature elasticity, 𝐹 is obtained as (Helfrich, 1986; Kleinert, 1986)

𝐹 = 𝜇𝑁 + 8𝜋
(

𝜅 −
𝑘𝐵𝑇
16𝜋

log𝑁
)

, (27)

where 𝑁 is estimated through the expression 𝑁 =
4𝜋𝑟20
𝑑2

with 𝑑 being the thickness of the membrane. The above well-known result
hows that thermal fluctuations lead to a softening effect by reducing the apparent bending modulus.

Although active processes drive a vesicle away from equilibrium, here we consider the active vesicle to be in steady-state
nd close to equilibrium. Recent studies have considered non-equilibrium effects in active membranes in a similar manner by
enormalizing the temperature which is an equilibrium concept (Turlier and Betz, 2019). This near-equilibrium assumption allows
s to use the method proposed by Helfrich to estimate the size distribution of active vesicles by deriving an effective free energy
hich incorporates the effects of fluctuations due to activity in addition to thermal fluctuations.

We follow Ahmadpoor and Sharma (2016) to estimate this effective free energy from fluctuations. To this end, the additional
ree energy 𝐹 due to fluctuations of a spherical vesicle can be estimated from the change in apparent bending modulus as

𝐹 =
𝑘𝐵𝑇
2

∑

𝓁,𝑚
log𝐺𝓁𝑚 = 8𝜋(𝜅 − 𝜅eff ) , (28)

where 𝐺𝓁𝑚 is obtained from the fluctuation spectra as

⟨|𝑢𝓁𝑚|
2
⟩ ≈

𝑘𝐵𝑇
2𝐺𝓁𝑚

. (29)

Comparing Eqs. (23) and (29) yields

𝐺𝓁𝑚 = 𝜅
𝐸𝑎𝓁

1 + 𝑓𝓁
, where 𝑓𝓁 =

𝜒𝑎𝑥𝓁
𝐸𝑎𝓁

. (30)

𝑎
𝓁 can be written in terms of the different modes of the spherical harmonics as

𝜅𝐸𝑎𝓁 = 𝜅
[

𝓁2(𝓁 + 1)2 − 2𝓁(𝓁 + 1)
]

+ 𝜅(𝜎̄ + 𝜎̄𝑎)(𝓁 + 2)(𝓁 − 1) = 𝑐1𝑞
4 − 𝑐2𝑞2 + 𝑐3𝑞2 (31)

here we have defined 𝑞2 = 𝓁(𝓁 + 1) and approximated (𝓁 + 2)(𝓁 − 1) ≈ 𝑞2, so that

𝑐1 = 𝜅, 𝑐2 = 𝜅, 𝑐3 = 𝜅(𝜎 + 𝜎̄𝑎) (32)

ubstituting these expressions in Eq. (28), the expression for 𝜅𝑒𝑓𝑓 is derived as

𝜅𝑒𝑓𝑓 = 𝜅 −
𝑘𝑏𝑇
16𝜋

(

log𝑁 − (𝜎̄ + 𝜎̄𝑎) log𝑁 +
∑

𝑙,𝑚

𝜒𝑎𝑥𝑙
𝐸𝑎𝓁

)

. (33)

Substituting this in Eq. (26) yields the free energy for active vesicles as

𝐹 = 𝜇𝑁 + 8𝜋𝜅 −
𝑘𝑏𝑇
2

(

log𝑁 − (𝜎̄ + 𝜎̄𝑎) log𝑁 +
∑

𝑙,𝑚

𝜒𝑎𝑥𝑙
𝐸𝑎𝓁

)

. (34)

By substituting this in Eq. (25), we get the size distribution for vesicles with active noise and active tension. As we shall see in
Section 4, this contribution resolves the size distribution paradox. Note that taking 𝜎̄, 𝜎̄𝑎, and 𝜒𝑎 to be zero recovers Helfrich’s
results for passive vesicles (Eq. (27)).
6



Journal of the Mechanics and Physics of Solids 191 (2024) 105749S. Ramesh and Y. Kulkarni

K

T

To evaluate the summation term in Eq. (34), we must discuss the expression for 𝑥𝓁 which depends on the nature of activity. The
origin of active noise has been attributed to two types of forces in literature — curvature force, where the active proteins induce
spontaneous curvature in the membrane and direct force, where the active proteins directly exert forces on the membrane. Explicit
expressions for the free energy, and vesicle size distribution for the two cases are provided below.

Case I: Active noise due to curvature force
The curvature force is exerted by transmembrane proteins and ion pumps by affecting the spontaneous curvature and is described

using 𝑥𝓁 = (𝓁 + 2)2(𝓁 − 1)2∕4 (Loubet et al., 2012). Isolating the summation term in (33), we have

∑

𝑙,𝑚

𝜒𝑎𝑥𝑙
𝐸𝑎𝓁

=
∑

𝑙,𝑚
𝜅

𝜒𝑎(𝓁 + 2)2(𝓁 − 1)2

4 𝑞4(𝜅 − 𝜅
𝑞2

+ 𝜅(𝜎̄+𝜎̄𝑎)
𝑞2

)
(35)

≈
∑

𝑙,𝑚
𝜅
𝜒𝑎𝑞4

4 𝑞4𝜅
(36)

=
∑

𝑙,𝑚

𝜒𝑎
4

(37)

=
𝜒𝑎
4 ∫

𝑙𝑚𝑎𝑥

𝑙𝑚𝑖𝑛
(2𝑙 + 1)𝑑𝑙 (38)

=
𝜒𝑎
4
𝑁 (39)

Substituting it in Eq. (34) yields the free energy as

𝐹 = 𝜇𝑁 + 8𝜋𝜅 −
𝑘𝑏𝑇
2

(

log𝑁 − (𝜎̄ + 𝜎̄𝑎) log𝑁 +
𝜒𝑎
4
𝑁
)

. (40)

Then, the probability density in Eq. (25) becomes

𝑤(𝑁) = 𝐴𝑁𝛼′∕2 exp[−𝑓 (𝑁)] , (41)

where

𝑓 (𝑁) = 1
𝑘𝐵𝑇

(𝐴1𝑁) , (42)

with 𝛼′ = 1 − (𝜎̄ + 𝜎̄𝑎) and 𝐴1 = 𝜇 − 𝜒𝑎∕8.

Case II: Active noise due to direct force
The direct force is exerted directly on the membrane as a random force by proteins and the cytoskeleton and described using

𝑥𝓁 = 1 (Loubet et al., 2012). Isolating the summation term in (33) and simplifying, we get
∑

𝑙,𝑚

𝜒𝑎𝑥𝑙
𝐸𝑎𝓁

=
∑

𝑙,𝑚
𝜅

𝜒𝑎
𝑞4(𝜅 − 𝜅

𝑞2
+ 𝜅(𝜎̄+𝜎̄𝑎)

𝑞2
)

(43)

≈
∑

𝑙,𝑚
𝜅
𝜒𝑎
𝑞4𝜅

(44)

=
∑

𝑙,𝑚

𝜒𝑎
𝑙2(𝑙 + 1)2

(45)

= ∫

𝑙𝑚𝑎𝑥

𝑙𝑚𝑖𝑛

𝜒𝑎
𝑙2(𝑙 + 1)2

(2𝑙 + 1)𝑑𝑙 (46)

= −𝜒𝑎

(

1
𝑙2𝑚𝑎𝑥 + 𝑙𝑚𝑎𝑥

− 1
6

)

. (47)

eeping the upper cut-off as 𝑙𝑚𝑎𝑥 = 𝑟0
𝑑 (Bar-Ziv et al., 1995), and using the relation 𝑁 =

4𝜋𝑟20
𝑑2

we obtain

∑

𝑙,𝑚

𝜒𝑎𝑥𝑙
𝐸𝑎𝓁

= −𝜒𝑎

⎛

⎜

⎜

⎜

⎝

1
𝑁
4𝜋 +

√

𝑁
4𝜋

− 1
6

⎞

⎟

⎟

⎟

⎠

. (48)

hen, the effective free energy for the direct force is obtained as

𝐹 = 𝜇𝑁 + 8𝜋𝜅 −
𝑘𝑏𝑇
2

⎛

⎜

⎜

⎜

log𝑁 − (𝜎̄ + 𝜎̄𝑎) log𝑁 − 𝜒𝑎

⎛

⎜

⎜

⎜

1
𝑁 +

√

𝑁
− 1

6

⎞

⎟

⎟

⎟

⎞

⎟

⎟

⎟

. (49)
7
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Fig. 2. Probability distribution for vesicle size as a function of 𝑟0∕𝑑 subjected to active noise due to curvature force and active tension (a) Amplitude of active
oise is held constant at 𝜒𝑎 = 0.15 with active tension 𝜎̄𝑎 varying from −15 to −4; (b) Active tension held constant at 𝜎̄𝑎 = −15 with amplitude of active noise 𝜒𝑎
arying from 0.1 to 0.15. We use the following parameters: 𝜅 = 10𝑘𝐵𝑇 , and 𝑑 = 5×10−9 m. The black curve based on the Helfrich model is drawn for reference.

Substituting Eq. (49) in Eq. (25), we get the same form for the probability distribution as Eq. (41) with

𝑓 (𝑁) = 1
𝑘𝐵𝑇

⎡

⎢

⎢

⎢

⎣

𝜇𝑁 + 𝐴2

⎛

⎜

⎜

⎜

⎝

1
𝑁
4𝜋 +

√

𝑁
4𝜋

− 1
6

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

(50)

here 𝐴2 = 𝜒𝑎∕2 and 𝛼′ = 1 − (𝜎̄ + 𝜎̄𝑎).

. Numerical results

.1. Interplay of active tension and noise

To elucidate how the two parameters 𝜎̄𝑎 and 𝜒𝑎 influence the vesicle size distribution, we present numerical results for different
alues of the parameters for curvature and direct force in Figs. 2 and 3. In all the figures, we plot the probability distribution obtained
rom the Helfrich model (Helfrich, 1986) for passive vesicles (without activity) for the sake of comparison. For simplification, we set
he surface tension 𝜎̄ to zero. In our study, this implies that the membrane tension arises solely from activity and not from the energy
ost for areal changes. Previous studies examining the stability of vesicles have shown that 𝜎̄ = −6 is a limit for surface tension
omputed from the areal constraint for stability of vesicles in equilibrium (Seifert, 1999). Although active tension is not limited to
uch constraint, we consider values for 𝜎̄𝑎 on the same order. Figs. 2a and 3a reveal that active tension has significant impact on the
esicle size distribution. It makes smaller vesicle size probable by reducing the excess area available for fluctuations, and in other
ords, making the vesicle membrane tauter. Thus, for a constant amplitude of active noise, increase in active tension makes the

ize distribution shift towards smaller vesicle sizes for both curvature and direct forces. In contrast, Figs. 2b and 3b show that active
oise makes larger vesicles more probable by increasing the fluctuations. Furthermore, curvature force has a more pronounced
mpact on vesicle size distribution than direct force. Not only does it shift the distribution to larger sizes, it also broadens the bell
urve. Finally, we wish to emphasize that our model captures the threshold or cutoff for 𝑟0∕𝑑 observed in experiments even with

linearized curvature elasticity.
Previously, Ahmadpoor and Sharma (2016) have reported that nonlinear curvature elasticity is important to capture this

threshold for a tensionless membrane. In addition, Kulkarni (2023) has shown that only adding active noise to Helfrich’s theory
based on linearized curvature elasticity does not yield the threshold. This confirms that considering active tension in addition to
active noise enables the model to predict the threshold and vesicle sizes that can be smaller or larger as nature deems necessary
which are not possible from equilibrium considerations.

4.2. Comparison with experimental data

Finally, we compare our results with different experimental studies from literature. In our model, we have only two fitting
parameters, 𝜎̄𝑎 and 𝜒𝑎 which are fit to experimental data concurrently using the least square fit method. Although these parameters
re estimated by fitting to experimental data, they have a clear physical underpinning attributed to active physiological processes.
s seen in Fig. 4, our model can fit experimental data for diverse size distributions very well. In comparison, Helfrich’s model

or passive vesicles is unable to capture the experimental plots. We wish to note that there is no fitting parameter in the Helfrich
8

odel presented in Fig. 4. In principle, the bending modulus can also be a fitting parameter in the Helfrich model. However, 𝜅
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Fig. 3. Probability distribution for vesicle size as a function of 𝑟0∕𝑑 subjected to active noise due to direct force and active tension. (a) Amplitude of active
noise is held constant at 𝜒𝑎 = 1.25 with active tension 𝜎̄𝑎 varying from −6 to 1. (b) Active tension is held constant at 𝜎̄𝑎 = −6 with amplitude of active noise 𝜒𝑎
varying from 25 to 450. We use the following parameters: 𝜅 = 10𝑘𝐵𝑇 , and 𝑑 = 5 × 10−9 m. The black curve based on the Helfrich model is drawn for reference.

Fig. 4. Our theoretical results for size distribution (solid lines) matched with different experimental data (histograms) using least square fit. The legends show
the values of 𝜎̄𝑎 and 𝜒𝑎 for active tension and active noise amplitude for direct force respectively. (a) shows data from Coldren et al. (2003). (b) shows data
from Xu et al. (2013). (c) shows data for very small vesicle sizes from Huang et al. (2017). We used the following parameters: 𝜅 = 10𝑘𝐵𝑇 , and 𝑑 = 5 × 10−9 m
for all the curves. The dashed line shows the results for the Helfrich model (Eq. (27)).
9
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is a material property and for a lipid bilayer, it is typically in the range 10–20 𝐾𝐵𝑇 . Since it does not vary significantly, simply
varying 𝜅 does not offer the flexibility to fit different experimental data. This provides the motivation that the Helfrich model
needs to be enriched with additional physical parameters. We emphasize that although some experimental studies have shown a
wider variation of bending modulus based on effects such as salt concentration, cholesterol content and density of transmembrane
proteins, the bending modulus measured in these experiments is the apparent bending modulus and corresponds to 𝜅𝑒𝑓𝑓 rather than
𝜅. In our model, we hypothesize that these effects are indeed accounted for by active tension and active noise and enter the size
distribution through 𝜅𝑒𝑓𝑓 . Our model proposes that active tension and active noise are both needed to capture the wide variety of
experimentally observed vesicle size distributions. What our model illustrates is that vesicles made out of the same membrane (fixed
bending modulus) at a given temperature can achieve different vesicle sizes by varying the activity which is not possible simply
based on equilibrium considerations.

The experimental data in Fig. 4a is taken from Coldren et al. (2003). In this study, Coldren et al. report two methods to measure
vesicle size distribution and speculate that the vesicle size distribution depends on a competition between the entropy of vesicles
and surfactant mixing, and the curvature elasticity of the vesicle membranes. Thus, their model captures their different experimental
size distributions by varying the number of amphiphilic molecules and effective bending rigidity. This is consistent with our model
in which the active forces result in an effective free energy and a renormalized bending rigidity. The experimental data in Fig. 4b
is taken from Xu et al. (2013). Fig. 4c shows experimentally observed size distribution for egg lecithin and egg lecithin/cholesterol
vesicles taken from Huang et al. (2017). All the curves have been fitted using least square method by varying the parameters 𝜎̄𝑎
nd 𝜒𝑎 for active tension and active noise amplitude for direct force respectively. Thus, in Fig. 4, it is the interplay of active tension
nd active noise that enables our model to capture the threshold or minimum vesicle diameter observed in experiments, and vary
he standard deviation and mean of the Gaussian-like curve. In order to understand whether the estimates for 𝜎̄𝑎 and 𝜒𝑎 obtained
ere numerically are physically reasonable, we first note that there are no experimental measurements of active noise available in
iterature. There are some estimates for active noise amplitudes and surface tension provided in prior studies (Loubet et al., 2012),
ut they are for very large micron-sized vesicles and cannot be compared directly with values we obtain for small nanometer-sized
esicles (considered in Fig. 4) due to the orders of magnitude difference. Hence, we use energetic arguments to furnish insights
nto the values for active noise and tension estimated in Fig. 4 while fitting to various experimental data. To this end, we note that
nergy for hydrolysis of an ATP molecule, the energy currency of biological cells, is about 12–13 𝑘𝐵𝑇 (Alberts et al., 2002). Using
q. (49), we can estimate the energy contribution from the active noise term and the active tension term. For Fig. 4a which has the
argest values of 𝜒𝑎 and 𝜎̄𝑎, for a typical vesicle with 𝑟0∕𝑑 ≈ 5, the energy contribution for the active noise is about 5𝑘𝐵𝑇 and that
or the active tension is about 28𝑘𝐵𝑇 , which are very reasonable energetic costs for a cell to furnish using ATP hydrolysis.

. Concluding remarks

We have investigated a model based on the principles of continuum mechanics and non-equilibrium statistical mechanics to
nderstand the role of active membranes on the size distribution of active vesicles. Earlier studies on vesicle size distribution relied
n thermal fluctuations or active fluctuations to determine size distributions. In comparison, our model is enriched with the interplay
f active noise and active tension. This endows the vesicles with the ability to achieve diverse size distributions that are not captured
y thermal fluctuations or active noise. Our statistical mechanics results for active vesicles with linearized curvature elasticity can
eproduce different experimental data for varying vesicle size distributions published in the literature. The theoretical framework
eveloped here opens avenues for investigating other biological problems of interest such as pore formation, and membrane
nclusions where active forces may play a role. Examining the restrictions on the active tension and active noise is critical for
nderstanding the limits on vesicle size distribution found in nature as well as synthesized in laboratories for biotechnological
pplications. Recently developed non-equilibrium statistical mechanics approaches (Seifert, 2012; Leadbetter et al., 2023) could
rovide insightful means to investigate far-from-equilibrium phenomena associated with active matter. Stability analysis of active
embranes and vesicles provides another fascinating (and related) avenue for future study.
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