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An Electro-Chemo-Mechanical
Theory With Flexoelectricity:
Application to Ionic Conductivity
of Soft Solid Electrolytes
Flexible batteries are gaining momentum in several fields, including wearable medical
devices and biomedical sensors, flexible displays, and smartwatches. These energy
storage devices are subjected to electro-chemo-mechanical effects. Here, we present a the-
oretical framework that couples diffusion and electromechanical theory with flexoelectri-
city. As an example, we investigate the effect of flexoelectricity on the ionic conductivity
in soft materials. Our analytical results for a thin film made of a soft material reveal that
the ionic conductivity is significantly higher at the nanoscale and decreases exponentially
to approach the bulk value with increasing film thickness. Furthermore, we find that flexoe-
lectricity reduces the ionic conductivity dramatically at film thickness smaller than the
length scale associated with flexoelectricity. This behavior is attributed to the opposite
directions of polarization induced by flexoelectricity and the flow of ions driven by the chem-
ical potential. These findings shed light on the interplay between flexoelectricity and diffu-
sion which would be paramount in designing miniaturized energy storage devices.
[DOI: 10.1115/1.4063897]
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1 Introduction
In the rapidly evolving world of technology, energy storage

devices are playing an increasingly vital role [1,2]. This is due to
the dramatic increase in demand for miniature self-powering
devices, flexible dynamic displays, portable electronics, health
care, and fitness-tracking devices, among others [3,4]. The key
components of batteries that govern their efficiency as energy
storage devices are the electrodes and the electrolyte. Naturally
then, there has been tremendous activity in the areas of materials
science and mechanics in understanding and improving the
mechanical behavior of the electrodes [5–10] and electrolytes
[11–14]. The electrolyte facilitates the flow of ions between the
electrodes and enables the chemical reactions that generate electri-
cal energy, making the battery functional. Ionic conductivity of
electrolytes is an essential characteristic as it determines the effi-
ciency and performance of a battery. Conventional Li-ion batteries
work by ionic transport between two electrodes through a non-
aqueous liquid electrolyte [15,16]. Although these energy storage
devices have high ionic conductivity [17] which leads to rapid
charge and discharge rates, they do not support large deformations

which are imperative for designing stretchable and flexible batte-
ries. This is where solid-state batteries show extraordinary promise
which has led to a surge of interest in stretchable and flexible solid-
state batteries with solid electrolytes [18–20].
Solid-state batteries with solid electrolytes offer significant

advantages over traditional Li-ion batteries, despite their lower
ionic conductivity. They not only have a higher energy density
[21] but also exhibit superior thermal stability [22], making them
an ideal choice for miniature wearable technologies. In addition,
solid-state batteries are a safer alternative to Li-ion batteries, as
they eliminate the risk of organic solvent leakage [23], which
could be toxic. Solid electrolytes also inhibit the growth of
lithium dendrites [24], enhancing their overall safety and perfor-
mance. Particularly in the context of stretchable and flexible batte-
ries, electrolytes that are solid-state as well as soft are ideal
candidates. Interestingly, in soft solid electrolytes, the strain gradi-
ents resulting from bending and twisting induce a flexoelectric
effect, which is further compounded by the presence of ionic diffu-
sion. This interaction between strain gradients and ionic diffusion
highlights the importance of studying the coupling of these two
effects in soft or flexible solid-state batteries. We refer the reader
to a perspective article by Ardebili on the mechanics issues in
soft solid electrolytes [25].
Flexoelectricity is the phenomenon that arises due to the

coupling between strain gradient and polarization. Unlike piezo-
electricity which is another form of electromechanical coupling
between uniform strain and polarization that only exists in
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noncentrosymmetric crystals, flexoelectricity in principle exists in
all dielectric/insulating materials [26]. The mathematical expres-
sion for polarization due to piezoelectricity and flexoelectricity
is given by [27]

Pi = dijkεjk + fijkl
∂εjk
∂xl

(1)

Here, Pi is the component of the polarization vector, εjk is the
component of strain, dijk and fijkl are the components of third-order
piezoelectric tensor and fourth-order flexoelectric tensor, respec-
tively. Flexoelectricity is predominant in soft materials [27–29],
nanomaterials [26], and materials where traditional electromechan-
ical couplings (e.g., piezoelectricity) are absent. Flexoelectricity
has been widely studied in the biological context [27,30–35]
and in liquid crystals [36,37]. With the advent of soft solid elec-
trolytes for next-generation solid-state batteries, it is critical to
understand the mechanics of soft materials subjected to mechani-
cal, chemical, and electrical effects as well as their coupling. To
this end, in this paper,

• We formulate a multi-physics theory incorporating diffusion
and flexoelectricity for soft materials rooted in the principles
of thermodynamics and continuum mechanics. The resulting
governing equations enable an understanding of the coupling
between the two phenomena.

• By solving a boundary value problem of a soft thin film, we
investigate the variation of ionic conductivity as a function
of film thickness and stain under the effect of flexoelectricity
and diffusion of ions.

• We determine the effect on the overall polarization across the
thin film due to the coupling of diffusion with flexoelectricity
and provide insights into the interplay between the two effects
on the ionic conductivity in the thin film.

The outline of the paper is as follows. In Sec. 2, we present a
comprehensive continuum theory that couples the effect due to flex-
oelectricity and diffusion. We intend to derive the governing equa-
tions and the associated boundary conditions. In Sec. 3, the
governing equations and boundary conditions for the thin film are
derived, and the equations are solved numerically. In Sec. 4, we
analyze and discuss the results to elucidate the significant effects
of the coupling of flexoelectricity and diffusion on the behavior
of the polymer thin film and its implications for ionic conductivity.
In Sec. 5, we conclude by summarizing the key results of the paper
and discussing avenues for future studies.

2 A Nonlinear Continuum Theory for
Electromechanical Coupling and Diffusion
In this section, we develop a theoretical framework for electro-

elastic-diffusive solids incorporating flexoelectricity. Specifically,
we present a nonlinear continuum theory for flexoelectricity
coupled with diffusion. A theoretical framework for modeling
electro-elastic-diffusive systems without considering the effect of
flexoelectricity was proposed by Mozaffari et al. [38]. A continuum
theory of flexoelectricity was developed by Deng et al. [39]. We
will closely follow these two works in formulating an integrated
continuum theory for electromechanical coupling and diffusion in
soft materials.
Notations: Uppercase and lowercase denote parameters in the

reference and current configuration, respectively, unless specified
otherwise. ∇y, div, curl, and grad denote differential operators in
the current configuration and ∇, Div, Curl, and Grad denote the dif-
ferential operators in the reference configuration.

2.1 System Definition. As shown in Fig. 1, we consider a con-
tinuum body undergoing elastic deformation coupled with
diffusion of ions in the presence of an electric field. The

thermodynamic state of the system is then determined by the defor-
mation y(., t) : ΩR→Ω(t), ion volumetric concentration
c(., t) :ΩR → R, and polarization P(., t) :ΩR → R3. Here, ΩR

denotes the reference configuration and Ω(t) denotes the current
configuration.
The behavior of the continuum body is consistent with the laws

of thermodynamics and Maxwell equations:

∇ × e = 0 and ∇ · d = ρcf (2)

where ρcf is the free charge density, e is the electric field, and d is the
electric displacement in the current configuration. The polarization
in the current configuration is given by

p = d − ε0e (3)

The continuum body interacts with the ambient system through a set
of mechanical, chemical, and electrical boundary conditions. The
mechanical boundary conditions are imposed on the subdivisions
SD and SN of ∂ΩR as follows:

y(x, t) = yb(x, t) on SD
applied external traction = te(x, t) on SN

{
(4)

where yb(., t) : SD → R3 is the prescribed boundary position in
the current configuration. The chemical boundary conditions are
imposed on the subdivisions ΥD and ΥN of ∂ΩR as follows:

μ = μe(x, t) on ΥD

J(x, t) · n = Je on ΥN

{
(5)

where μ(., t) :ΥD → R is the chemical potential, and μe(., t) is the
prescribed chemical potential on ΥD. J(., t) :ΩR → R3 is the ionic
flux and Je is the prescribed flux perpendicular to the boundary
on ΥN . As illustrated in Fig. 1, an electric field is applied by an
external circuit. The electric field, denoted by ξ: ΩR→ R, has an
effect on the transport of ions in the electrolyte. Assuming the
boundary potential applied by the external circuit to be ξe on ΥD,
we get the electrical boundary condition as follows:

ξ = ξe(x) on ΥD (6)

2.2 Balance Law for Species Diffusion. The derivation in this
section is similar to Ref. [40]. Let c(x, t) be the total number of
moles of the diffusing species per unit volume in the reference con-
figuration. The diffusing species can also be characterized by the
species flux, J(x, t), through the reference outer boundary ∂Ω+

R .
The number of moles of species per unit area per unit time is
given by

∫
∂Ω+

R

Je = −
∫
∂Ω+

R

J(x, t) · n (7)

The rate of chemical species across the volume, ΩR, is given by∫
ΩR

ċ = −
∫
∂Ω+

R

J · n (8)

Applying the divergence theorem, we get the equation for species
mass balance: ∫

ΩR

ċ = −
∫
ΩR

DivJ (9)

Since ΩR is arbitrary, the local form of species balance is given by

ċ + DivJ = 0 in ΩR (10)
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2.3 Rate of External Work. The rate of work done on the
body has a contribution from mechanical, electrical, and chemical
work. This can be expressed as

Ẇ = Ẇmech + Ẇchem + Ẇelec (11)

where the individual terms are given as

Ẇmech =
∫
∂Ω+

R

ẏ · te (12)

Ẇchem = −
∫
∂Ω+

R

μe J · n( ) (13)

Ẇelec = −
∫
∂Ω+

R

qξe J · n( ) −
∫
∂Ω−

R

ξ(Ḋ · n) (14)

Here, D is the nominal electric displacement which is given by

D = −ε0JC−1∇ξ + F−1P (15)

where F ≡ ∇y is the deformation gradient and C is the right
Cauchy–Green deformation tensor. ∂Ω+

R is the exterior boundary
of ∂ΩR and ∂Ω−

R is the interior boundary of ∂ΩR. Thus, Eq. (12)
is the rate of work done by the applied traction on the external
surface of the continuum body in the reference configuration. The
first term in Eqs. (13) and (14) is associated with the chemical
flux and electrical flux, respectively, due to the flow of ions into
the continuum body. These terms have a negative sign because
the direction of flux and normal are opposite to each other. We
note that the electric potential, ξ, may be discontinuous because
of the presence of chemical potential. The second term in Eq.
(14) can be interpreted considering the body as a capacitor. Thus,
consistent with Ref. [38], the total rate of work done on the body is

Ẇ =
∫
∂Ω+

R

ẏ · te −
∫
∂Ω+

R

μe + qξe
( )

(J · n) −
∫
∂Ω−

R

ξ(Ḋ · n) (16)

2.4 Rate of Change of Free Energy. We postulate that the
free energy of the body is given by

U[y, c] = Ub[y, c] + Uelect[y, c] (17)

where Uelect is the energy associated with the charges whereas Ub

includes a contribution to the free energy from deformation,

diffusion, and electromechanical coupling. Below, we derive
expressions for the rate of change of Ub and Uelect.

2.4.1 Rate of Change of Ub. We postulate that the Helmholtz
free energy density, Ψ, defines the constitutive behavior of
the body undergoing a quasi-static isothermal process and has the
form

Ub[y, c] =
∫
ΩR

Ψ(F, G, P, Π, c, κ) (18)

where G is the gradient of F, Π is the gradient of polarization, and
κ is the gradient of concentration. The free energy combines the
energy postulated by Deng et al. [39] for flexoelectricity and
by Mozaffari et al. [38] for an electro-elastic-diffusive system
without flexoelectricity.
From the principle of material frame indifference and from mate-

rial symmetries, we have

Ψ(RF, RG, RP, RΠ, c, Rκ)=Ψ(F,G, P,Π, c, κ) ∀ R ∈ SO(3)
Ψ(FQ,GQ, PQ,ΠQ, c, κQ)=Ψ(F,G, P,Π, c, κ) ∀ Q ∈ G

{
(19)

Here, SO(3) is the set of all rigid rotations and G ⊂ SO(3) is the
group associated with material symmetries. If a material is isotropic,
G= SO(3). Since c is a scalar and J is a referential vector field, they
are both material frame indifferent.
Then, the time derivative of Eq. (18) yields

U̇b =
∫
ΩR

d
dt
Ψ(F, G, P, Π, c, κ) (20)

=
∫
ΩR

∂Ψ
∂F

· ∇ẏ + ∂Ψ
∂G

· ∇∇ẏ + ∂Ψ
∂P

· Ṗ +
∂Ψ
∂Π

· Π̇ +
∂Ψ
∂c

· ċ + ∂Ψ
∂κ

· κ̇

(21)

We note that

σ ≡
∂Ψ
∂F

and μ ≡
∂Ψ
∂c

(22)

where σ is the local internal Piola–Kirchhoff stress and μ is the
chemical potential. We use the balance law for species diffusion
to manipulate the last two terms in Eq. (21) and use the divergence
theorem to simplify the remaining terms as follows:

Fig. 1 An electro-elastic-diffusive continuum body in (a) reference and (b) current configuration. It is sub-
jected to prescribed displacement on SD and traction on SN where SN ∪ SD = ∂ΩR and SN ∩ SD =∅. ΥD is con-
nected to a solution of ions whereas a flux is applied perpendicular to ΥN where ΥN ∪ ΥD = ∂Ω and
ΥN ∩ ΥD =∅.
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∫
ΩR

∂Ψ
∂F

· ∇ẏ =
∫
∂Ω−

R

σ · n( )ẏ −
∫
ΩR

Div σ( ) · ẏ
∫
ΩR

∂Ψ
∂G

· ∇∇ẏ =
∫
∂Ω−

R

∂Ψ
∂G

( )
· n

( )
∇ẏ −

∫
∂Ω−

R

Div
∂Ψ
∂G

( )
· n

( )
ẏ
∫
ΩR

Div Div
∂Ψ
∂G

( )( )
· ẏ

∫
ΩR

∂Ψ
∂Π

· Π̇ =
∫
∂Ω−

R

∂Ψ
∂Π

· n
( )

Ṗ −
∫
ΩR

Div
∂Ψ
∂Π

( )
· Ṗ

∫
ΩR

∂Ψ
∂c

· ċ = −
∫
ΩR

μ(DivJ) =
∫
ΩR

J · ∇μ −
∫
∂Ω−

R

(J · n)μ
∫
ΩR

∂Ψ
∂κ

· κ̇ = −
∫
∂Ω−

R

Div
∂Ψ
∂κ

( )
J · n( ) +

∫
ΩR

J · Grad Div
∂Ψ
∂κ

( )( )
+
∫
∂Ω−

R

∂Ψ
∂κ

· n
( )

DivJ (23)

The first term of Eq. (23)2 can be further reduced to∫
∂Ω−

R

∂Ψ
∂G

( )
· n

( )
∇ẏ =

∫
∂Ω−

R

∂Ψ
∂G

( )
n⊗ I − n⊗ n( ) + ∂Ψ

∂G
n⊗ n⊗ n

[ ]
∇ẏ dA

=
∫
∂Ω−

R

Div
∂Ψ
∂G

( )
n⊗ I − n⊗ n( )( )ẏ

( )
−
∫
∂Ω−

R

Div
∂Ψ
∂G

( )
n⊗ (I − n⊗ n)

( )
ẏ +

∫
∂Ω−

R

Div
∂Ψ
∂G

( )
(n⊗ n) ẏ · n( )

(24)
For any vector V on a closed boundary ∂Ω−

R , the tangential component of ∇ẏ is independent of ẏ since [38]∫
∂Ω−

R

DivV( ) : I − n⊗ n( ) = 0 (25)

Then, the first term of Eq. (24) becomes zero. Denoting (∂Ψ/∂G)n⊗ (I− n⊗ n) by a tensor β, we get the rate of change of free energy of the
body by substituting Eqs. (23) and (24) in Eq. (20) as follows:

U̇b =
∫
∂Ω−

R

Div
∂Ψ
∂G

( )
n⊗ n( )(ẏ · n) +

∫
∂Ω−

R

σ − Div
∂Ψ
∂G

( )[ ]
· n − Divβ

[ ]
ẏ +

∫
∂Ω−

R

∂Ψ
∂Π

· n
( )

Ṗ

+
∫
ΩR

Div σ − Div
∂Ψ
∂G

( )[ ]
· ẏ +

∫
ΩR

∂Ψ
∂P

− Div
∂Ψ
∂Π

( )[ ]
· Ṗ +

∫
ΩR

J · ∇μ −
∫
∂Ω−

R

(J · n)μ

−
∫
∂Ω−

R

Div
∂Ψ
∂κ

( )
J · n( ) +

∫
ΩR

J · Grad Div
∂Ψ
∂κ

( )( )
+
∫
∂Ω−

R

∂Ψ
∂κ

· n
( )

DivJ (26)

2.4.2 Rate of Change of Uelect. The calculations presented here
follow the work of Darbaniyan et al. [41]. The electric energy in the
current configuration is given by

Uelect =
∫
Ω

ε0
2
|∇yξ|2 dv (27)

where ε0 is the permittivity of free space. Converting Eq. (27) to the
reference configuration, we get

Uelect =
∫
ΩR

ε0
2
J|F−T∇ξ|2 dV (28)

where we recall that ∇yξ = F−T∇ξ and dv= J dV, J is the Jacobian.
Using standard results from continuum mechanics [41]

Ḟ
−1

= −F−1ḞF−1 (29)

J̇ = JF−T · Ḟ (30)

˙
JC−1 = −JF−1ḞF−T − JC−1Ḟ

T
F−T + J(F−T · Ḟ)C−1 (31)

we get

ε0
2
∇ξ · ˙

JC−1∇ξ = −ε0JḞ · (F−T∇ξ)⊗ (C−1∇ξ) −
1
2
|F−T∇ξ|F−T

[ ]
(32)

Taking the time derivative of Eq. (28) and using the divergence
theorem, we get

U̇elect =
∫
ΩR

∇ẏ · ΣMW + ∇ξ · F−1Ṗ + ξ(∇ · Ḋ)[ ]
−
∫
∂Ω−

R

ξ(Ḋ · n)

(33)

where ΣMW is the Maxwell stress expressed as

ΣMW F, P[ ] = (F−T∇ξ)⊗ (ε0JC−1∇ξ − F−1P) −
ε0
2
|F−T∇ξ|F−T

(34)

Using Eq. (15) and the Maxwell equation, DivD= ρf, where ρf is the
free charge density in the reference configuration, we get

DivD = q(c − c0(x)) (35)
where c0 is the concentration of immobile ions. Taking the time
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derivative, we get

∇ · Ḋ = qċ (36)

Using the Maxwell equation, Je + Ḋ = 0, ignoring magnetic effects,
we get

Ḋ = −Je = −qJ (37)

where Je is the electric current density in the reference configura-
tion. Using Eqs. (36) and (37) in Eq. (33) yields

U̇elect =
∫
ΩR

∇ẏ · σMW +∇ξ · F−1Ṗ + qċξ
[ ]

+
∫
∂Ω−

R

qξ(J · n) (38)

Applying the divergence theorem to the first and last terms, we get

U̇elect =
∫
ΩR

−ẏ · Div σMW( ) + (F−T · ∇ξ)Ṗ + J · ∇(qξ)[ ]
+
∫
∂Ω−

R

ẏ σMW · n( ) (39)

2.5 Rate of Energy Dissipation. The rate of energy dissipa-
tion is given by

Ḋ = Ẇ − U̇b − U̇elect (40)

Substituting Eqs. (16), (26), and (39) in Eq. (40), we get the expres-
sion for the rate of energy dissipation as

Ḋ =
∫
ΩR

Div σ − Div
∂Ψ
∂G

( )
+ σMW

[ ]
· ẏ −

∫
ΩR

J · ∇(qξ + μ) −
∫
ΩR

∂Ψ
∂P

− Div
∂Ψ
∂Π

( )
+ F−T · ∇ξ

[ ]
· Ṗ −

∫
∂Ω+

R

(μe + qξe)(J · n)

+
∫
∂Ω−

R

(μ + qξ)(J · n) +
∫
∂Ω+

R

ẏ · te −
∫
∂Ω−

R

∂Ψ
∂Π

· n
( )

Ṗ +
∫
∂Ω−

R

Div
∂Ψ
∂κ

( )
J · n( ) −

∫
ΩR

J · Grad Div
∂Ψ
∂κ

( )( )
−
∫
∂Ω−

R

∂Ψ
∂κ

· n
( )

DivJ

−
∫
∂Ω−

R

σ − Div
∂Ψ
∂G

( )
+ σMW

( )
· n − Divβ

[ ]
· ẏ −

∫
∂Ω−

R

∂Ψ
∂G

( )
n⊗ n( )(ẏ · n) (41)

2.6 Governing Equations and Boundary Conditions.
According to the second law of thermodynamics, Ḋ ≥ 0 for all iso-
thermal processes. We follow the Coleman–Noll procedure to
ensure that the laws of thermodynamics are satisfied and obtain
the following:

−J · ∇ qξ + μ + Div
∂Ψ
∂κ

( )( )
≥ 0 in ΩR

Div σ − Div
∂Ψ
∂G

( )
+ σMW

[ ]
= 0 in ΩR

∂Ψ
∂P

− Div
∂Ψ
∂Π

( )
+ F−T · ∇ξ

[ ]
= 0 in ΩR

DivD = ρf in ΩR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

We note that Eq. (42)2 is the mechanical equilibrium equation
accounting for electromechanical coupling. Equation (42)3 yields
an additional equation required to solve for polarization. Equation
(42)4 is the Maxwell equation. The inequality in Eq. (42)1 can be
satisfied by assuming the constitutive relation for diffusion to be
of the form

J = cv, v = −γ(x)∇ qξ + μ + Div
∂Ψ
∂κ

( )( )
(43)

where v is the linear mobility. Thus, Eq. (42)1 recovers the
diffusion equation for ion concentration, c. To summarize, the
electromechanical-diffusive system should satisfy the following

governing equations:

ċ + DivJ = 0, J = −cγ(x)∇ qξ + μ + Div
∂Ψ
∂κ

( )( )
in ΩR

Div σ − Div
∂Ψ
∂G

( )
+ σMW

[ ]
= 0 in ΩR

∂Ψ
∂P

− Div
∂Ψ
∂Π

( )
+ F−T · ∇ξ

[ ]
= 0 in ΩR

DivD = ρf in ΩR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

and boundary conditions:

σ − Div
∂Ψ
∂G

( )
+ σMW

( )
· n − te − Divβ = 0 on SN

∂Ψ
∂Π

· n = 0 on ∂ΩR

μe + qξe = μ + qξ + Div
∂Ψ
∂κ

( )
on ΥD

J · n = 0 on ∂ΩR \ΥD

∂Ψ
∂κ

· n = 0 on ∂ΩR

∂Ψ
∂G

n⊗ n = 0 on ∂ΩR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

3 Example of an Electro-elastic-diffusive System—A
Soft Solid Electrolyte
The boundary value problem derived in Eqs. (44) and (45) repre-

sents a general three-dimensional nonlinear continuum theory
incorporating diffusion and electromechanical coupling with
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flexoelectricity. To demonstrate the coupled behavior of an
electro-elastic-diffusive system, we consider a simple one-
dimensional soft solid electrolyte as shown in Fig. 2. Our aim is
to gain insights into the coupling between diffusion and electrome-
chanical coupling. Specifically, we wish to elucidate the effect of
flexoelectricity and the diffusion of ions on polarization and
study their interplay in determining the ionic conductivity of elec-
trolytes. Since electrostatics and flexoelectricity induce characteris-
tic length scales into the problem, we will also investigate how ionic
conductivity varies as a function of the film thickness.

3.1 Governing Equations. To this end, consider a thin film
made of polyvinylidene fluoride (PVDF) with film thickness, w.
For a linearized theory, we expand the Helmholtz free energy
density Ψ up to quadratic terms to obtain

Ψ(F, G, P, Π, c; x) = αel(x)Tr(F − I) +
β(x)
2

(c − c0(x))2

+ μ̂(x)(c − c0(x)) +
1
2
P · a(x)P

+
1
2
(F − I) :C(x)(F − I) + P · f(x)G

+
1
2
Π :b(x)Π +Π : e(x)(F − I) (46)

Here, I is the identity matrix, μ̂(x) is the standard chemical
potential or the chemical potential of the pure ion, αel(x) is the
coupling coefficient for elasto-diffusion, β(x) is the chemistry
modulus, a(x) is the reciprocal dielectric susceptibility, C(x) is
the fourth-order elasticity tensor satisfying major and minor sym-
metries (Cijkl = Cklij = Cijlk), f(x) is the fourth-order flexoelectric
tensor, b(x) is the polarization gradient-polarization gradient cou-
pling tensor, and e(x) is the coupling tensor corresponding to
polarization gradient and strain proposed by Mindlin [42]. For

the sake of simplicity, we have ignored the contribution from
the concentration gradient, κ, to the free energy. Finally, we
note that the material properties are explicitly specified to be func-
tions of x. For brevity, in the subsequent calculations, this depen-
dence on x will be tacitly assumed.
In our boundary value problem, we consider a classical electro-

diffusion model known as the Poisson–Boltzmann–Nernst–Planck
model [38,43]. Consistent with this model, we introduce the elec-
trochemical potential and the Deybe length defined, respectively,
as

ϕ = μ + qξ and λ =

����
ε0β

q2

√
(47)

where q is the charge of the diffusing particle. From Eq. (22)2,
we get the relation

μ = αel∇ · u + β(c − c0) + μ̂ (48)

which yields

c − c0 =
1
β

μ − μ̂ − αel∇ · u( )
(49)

Using Eqs. (47) and (49), the governing equations now take the
form

ċ+Div(− cγ∇ϕ)= 0 in ΩR

Div
∂Ψ
∂F

−Div
∂Ψ
∂G

( )
+ σMW

[ ]
= 0 in ΩR

∂Ψ
∂P

−Div
∂Ψ
∂Π

( )
+F−T ·∇ξ

[ ]
= 0 in ΩR

Div −JC−1∇ξ+
1
ε0
F−1P

( )
+

ξ

λ2
=

q

ε0β
ϕ− μ̂− αel∇ · u( )

in ΩR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

Assuming small strain with |∇u|≪ 1, Eq. (50) can be further
simplified. The Maxwell stress also vanishes under small defor-
mation assumption [38,39]. This yields

ċ+Div(− cγ∇ϕ)= 0 in ΩR

Div
∂Ψ
∂F

−Div
∂Ψ
∂G

( )[ ]
= 0 in ΩR

∂Ψ
∂P

−Div
∂Ψ
∂Π

( )
+∇ξ

[ ]
= 0 in ΩR

Div −∇ξ+
1
ε0
P

( )
+

ξ

λ2
=

q

ε0β
ϕ− μ̂− αel∇ · u( )

in ΩR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

For a thin film, we assume that the fields only vary in the thick-
ness direction. Let the direction perpendicular to the film be x1 as
shown in Fig. 2. Substituting the one-dimensional Helmholtz free
energy density (Eq. (46)) in Eq. (51), we arrive at the following
simplified governing equations:

ċ+
d
dx1

(− cγ∇ϕ)= 0 in ΩR

C−
α2el
β

( )
d2u

dx21
+ h

d2P

dx21
+
αel
β

dμ
dx1

= 0 in ΩR

h
d2u

dx21
+ b

d2P

dx21
− aP−

dξ
dx1

= 0 in ΩR

d
dx1

−
dξ
dx1

( )
+

1
ε0

dP
dx1

+
ξ

λ2
=

q

ε0β
ϕ− μ̂− αel

du
dx1

( )
in ΩR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(52)

Fig. 2 Schematic of a polymer thin film of thickness w in the x1
direction. The film is held fixed at x1=0. This simplifies the
boundary value problem to a 1D problem.

Fig. 3 Normalized ionic conductivity for varying thickness for a
thin film subjected to 5% strain in an electro-elastic-diffusive
systemwith flexoelectricity. The ionic conductivity is normalized
by the conductivity at the initial concentration.
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Fig. 4 Normalized ionic conductivity of a thin film of thickness 50nm as a function of uniaxial strain for (a) an
electro-elastic-diffusive system with flexoelectricity and (b) an electro-diffusive system without flexoelectricity

Fig. 5 Normalized ionic conductivity of a thin film of thickness 100nm as a function of uniaxial strain for (a) an
electro-elastic-diffusive system with flexoelectricity and (b) an electro-diffusive system without flexoelectricity

Fig. 6 Variation of polarization along the thickness direction for a thin film for three systems—electro-elastic-diffusive system
with flexoelectricity (left), electro-diffusive system without flexoelectricity (center), and electromechanical system with flexoe-
lectricity without diffusion (right). Plots (a), (b), and (c) show polarization for a 50nm thin sheet. Likewise, plots (d), (e), and
(f) show polarization for a 200nm thin sheet, while plots (g), (h), and (i) show polarization for a 500nm thin sheet.
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Here, h= e− f. Finally, assuming open circuit conditions, i.e., ϕ= 0,
the governing equations take the form

ċ = 0, J = −cγ∇ϕ in ΩR

C −
α2el
β

( )
d2u

dx21
+ h

d2P

dx21
+
αel
β

dμ
dx1

= 0 in ΩR

h
d2u

dx21
+ b

d2P

dx21
− aP +

1
q

dμ
dx1

= 0 in ΩR

d2μ

dx21
+

q

ε0

dP
dx1

−
μ

λ2
= −

1

λ2
μ̂ + αel

du
dx1

( )
in ΩR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(53)

3.2 Boundary Conditions. We apply the following boundary
conditions:

(1) Assuming �ε to be the average normal strain in the film, the
displacements at the top and bottom of the film are given as

u|x1=w − u|x1=0 = w�ε (54)

(2) The electric tensor, Λ, is specified to be zero at both ends of
the film. The electric tensor, conjugate to the polarization
gradient, is defined as

Λ =
dΨ
dΠ

= e
du
dx1

+ b
dP
dx1

(55)

Hence, the boundary conditions are given by

e
du
dx1

∣∣∣∣
x1=w

+ b
dP
dx1

∣∣∣∣
x1=w

= 0 (56)

e
du
dx1

∣∣∣∣
x1=0

+ b
dP
dx1

∣∣∣∣
x1=0

= 0 (57)

(3) The chemical potential μ and its derivative μ′ are prescribed
on the boundaries as follows:

μ|x1=0 = μ0 (58)

Fig. 7 Displacement, polarization, and chemical potential plotted along the thickness direction for a 10nm thin film for three
cases—electro-elastic-diffusive system with flexoelectricity, electro-diffusive system without flexoelectricity, and flexoelectric
system without diffusion. (a) Compares the displacements for the three systems. (b) Compares the chemical potential between
the electro-elastic-diffusive system with flexoelectricity and without. (c), (e), and (d) The polarization along the thickness direc-
tion for the three systems, respectively.
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μ′|x1=w − μ′|x1=0 = qE (59)

where E is the applied electric field.

4 Results and Discussion
In this section, we present our results for the electro-

chemo-mechanical behavior of a polymer thin film by solving the
boundary value problem derived in the previous section. We
chose PVDF as the material for the thin film. The material proper-
ties for PVDF are mentioned in Appendix B. The governing equa-
tions in Eq. (53) are solved for the boundary conditions in Eqs.
(54)–(59) using the NDSolve package in Mathematica [44] for a
fully coupled electromechanical diffusive system. We also solve
the boundary value problem for two more cases to facilitate a
comparative study of the different effects—electromechanical
coupling with diffusion but without flexoelectricity (this reduces
to the model proposed by Mozaffari et al. [38]) and electromechan-
ical coupling with flexoelectricity but without diffusion (this
reduces to a one-dimensional system based on the theory presented
by Deng et al. [39]).
Figure 3 shows the variation of the normalized ionic conductivity

with the film thickness under the effect of flexoelectricity and diffu-
sion at 5% uniaxial strain. The ionic conductivity is calculated
based on the solution for concentration c(x1) using the expression
derived by Mozaffari et al. [38]. For convenience, we have summa-
rized the derivation in Appendix A. We observe that the ionic con-
ductivity increases exponentially as the film thickness approaches
the Debye length for PVDF which is about 4 nm. The ionic conduc-
tivity rapidly approaches the bulk value when the film thickness is
greater than 200 nm. We note that the lengthscale introduced by
flexoelectricity is on the same order as the radius of gyration
which is about 280 nm for PVDF.
To isolate the effect of flexoelectricity on the ionic conductivity,

we plot the normalized ionic conductivity as a function of strain for
a 50 nm and a 100 nm thin film as shown in Figs. 4 and 5, respec-
tively. We make two observations here. For a 50 nm thin film, the
ionic conductivity in the absence of flexoelectricity is almost
tenfold higher than in the case with flexoelectricity (Figs. 4(a)
and 4(b)). This indicates that for the particular boundary value
problem studied here, flexoelectricity appears to reduce the ionic
conductivity dramatically. However, for a 100 nm thin film, the
ionic conductivity in the absence of flexoelectricity is only slightly
greater than in the case with flexoelectricity (Figs. 5(a) and 5(b)).
Taken together, Figs. 4 and 5 reveal that flexoelectricity has a
much greater impact on ionic conductivity at small film thickness
and has no effect when the film thickness is on the order of the flex-
oelectricity lengthscale and larger.
The reason for this rather unexpected effect of flexoelectricity on

ionic conductivity can be illustrated using Fig. 6. It shows the polar-
ization for a 50 nm PVDF thin film for the three different cases,
namely, electro-elastic-diffusive system with flexoelectricity,
electro-diffusive system without flexoelectricity, and flexoelectric
system without diffusion. Since our boundary conditions dictate
that the chemical potential at x1= 0 is higher than that at x1=w,
ions flow from the bottom to the top of the film. Hence, as shown
in Fig. 6(b), the polarization due to the diffusion of ions is negative,
that is, acting in the downward direction, opposite to the flow of
ions. Moreover, it increases in magnitude from the top surface to
the bottom surface. In contrast, Fig. 6(c) shows that the net polari-
zation due to flexoelectricity in the absence of diffusion of ions is
zero. Nevertheless, Fig. 6(a) reveals that under the combined
effect of flexoelectricity and diffusion, polarization is negative
and almost constant through the film thickness. This implies that
the total polarization induced by flexoelectricity and diffusion is
more complex than simply adding the polarization due to the two
phenomena. Moreover, the polarization induced by flexoelectricity
creates a resistance to the flow of ions which in turn reduces the
ionic conductivity.

Figure 7 shows the results for displacement, chemical potential,
and polarization obtained for a film thickness of 10 nm at 5%
strain. The plots shown in Fig. 7(a) for displacement and
Fig. 7(d ) for polarization due to flexoelectric effect without diffu-
sion are consistent with the results for a thin film with flexoelectri-
city presented by Sharma et al. [45].

5 Conclusion
In this paper, we present a nonlinear continuum theory that inte-

grates mechanical, electrical, and chemical coupled phenomena in
flexoelectric-elastic-diffusive systems. By combining elements
from existing literature on continuum mechanics of electro-elastic-
diffusive systems and the theory of flexoelectricity, our study
bridges the gap between these theories to present a nonlinear
electro-chemo-mechanical theory incorporating flexoelectricity for
soft materials. By applying this theoretical framework to a specific
boundary problem of a thin film, we gain insights into the effect of
the coupling of flexoelectricity and diffusion on the ionic conductiv-
ity of thin films made of soft materials. The thin film example
reveals that flexoelectricity can have a dramatic impact on ionic
conductivity due to the interplay between the polarization induced
by the flexoelectric effect and the flow of ions. Although our theo-
retical formulation is general, we chose a simple one-dimensional
boundary value problem to demonstrate its application to soft
solid electrolytes. The proposed theory can open avenues for
further investigations into complex systems which would have real-
world applications specifically in the field of energy harvesting or
electromechanical phenomena in biological systems where flexoe-
lectricity plays a vital role.

Acknowledgment
The authors thank Professor Pradeep Sharma and Dr. Kosar

Mozaffari for insightful discussions. The authors also gratefully
acknowledge the support of NSF under grant DMR-2210155 and
the Bill D. Cook Professorship.

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The authors attest that all data for this study are included in the

paper.

Appendix A. Derivation of Ionic Conductivity
Here, we summarize the approximate expression for ionic con-

ductivity derived in Ref. [38]. As shown in Fig. 8, let the single
layer be subjected to the electrochemical potential, chemical poten-
tial, and electric potential denoted by ∇ϕ, ∇μ, and ∇ξ at the ends of

Fig. 8 Schematic of a single layer of electrolyte of width w. The
direction of the flow of positive ions is shown by the white arrow.
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the electrolyte, respectively. Let the resistance in the external circuit
be R. The total current in the external circuit is given by I=Δξ/R.
J is the ionic flux which is given by the expression J= I/qA.
Here, A is the normal surface area of the contact electrode with
the electrolyte. Ionic conductivity K satisfies the equation

J = −K
∇ϕ
w

(A1)

From Eq. (53)1, we get the following equation which gives a repre-
sentation of K in terms of ionic concentration:

∇ϕ = −
Jw

K
= −

∫w
0

J

γc(x)
(A2)

Substituting the above equation in Eq. (A1), we get the expression
for ionic conductivity

K =
1
w

∫w
0

J

γc(x)
dx

[ ]−1
(A3)

Appendix B. Material Properties for PVDF
The values are summarized in Table 1. The expression

bC − h2
( )

ε0/C 1 + aε0( ) has the same order as the radius of gyra-
tion (2.8 × 10−7 m). The value of the parameter b thus is estimated
using this relation as 9.927 × 10−3 N m4/C2. The order of e and f are
the same as they occur only simultaneously in the governing equa-
tions. The initial concentration is taken as 50mol and the chemical
potential of pure ion is taken as 0.5 eV [38]. The flexoelectric coef-
ficients and Young’s modulus are taken from Refs. [28,46], respec-
tively. Refer to Refs. [38,47] for the numerical values for
diffusion-related material constants.
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Table 1 Material properties of PVDF used in this example

Serial No. Parameter Value and units

1 b 9.927 × 10−3 N m4/C2

2 c 3.7GPa
3 f −179 N m/C
4 a 1.38 × 1010 N m2/C2

5 εr 10
6 ε0 8.854 × 10−12 C2/N m2

7 μ0 0 eV
8 μ̂ 0.5 eV
9 λr 4 × 10−9 m
10 αel 4 × 10−9 J
11 β

�����������
q2λ2/εrε0

√
= 4.62 × 10−46 N1/2 m2

12 q 1.6 × 10−19 C
13 c0 50mol
14 γ 1000 m2/V s

Note: Here, λr =λ
���
εr

√( )
is the Debye length for PVDF, γ is the mobility, and

c0 is the initial concentration.
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