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A B S T R A C T

Biological membranes and vesicles play a vital role in critical physiological processes like
endocytosis, cell division, and cell motility. Over decades, statistical and continuum mechanics
studies have provided phenomenal insights into the mechanics of these membranes and their
biophysical implications. However, most studies, until recently, have focused entirely on passive
(or ‘‘dead’’) membranes that exhibit only equilibrium thermal fluctuations. In this work, we
acknowledge the growing consensus that the active nature of membranes is vital to their
biophysical functioning. Active membranes contain proteins that are fueled by energy from
external sources such as adinosine triphosphate hydrolysis or light. These proteins exert forces
on the membrane during their activity causing the membrane to exhibit fluctuations that are
non-thermal in origin, thus driving them away from equilibrium. In short, active membranes
are ‘‘alive’’ with their own energy source capable of circumventing equilibrium considerations.
In this paper, we present a theory for active membranes based on principles of continuum
mechanics and a variational formulation that (we hope) provides a unifying framework to
understand seemingly disparate but insightful prior works in this field. Using our developed
continuum model, we study the statistical mechanics of active closed membranes or vesicles.
A specific highlight of our work is that we incorporate nonlinear curvature elasticity in our
continuum theory and obtain closed-form results for the fluctuation spectra for active vesicles.
Our numerical results reveal a rather unanticipated interplay of active forces, surface tension as
well as nonlinear elasticity for small vesicles. To gain insights into the biophysical implications
of activity in vesicles, we revisit the problem of determining the vesicle size distribution by
assuming that the active vesicles are close to thermal equilibrium. Our numerical calculations
show that active forces may significantly impact vesicle size distribution. A tantalizing impli-
cation of this finding is that by tuning active forces, active vesicles may attain vesicle size
distributions that are improbable for passive vesicles governed only by thermal fluctuations.

. Introduction

Biological membranes form the interface that separates cells (or their internal organelles and vesicles) from their environment.
s these cellular entities constantly interact with the surrounding medium, biological membranes play a central role in all cellular

unctions and physiological processes. Whether it is the response of cells to mechanical stimuli, transmission of messages through
lectrochemical signals, exchange of nutrients or expelling of waste product, biological membranes are inevitably involved in these
rucial processes.

The field of continuum mechanics and equilibrium statistical mechanics has made remarkable inroads into the understanding of
iological media and the literature, spanning several decades, is fantastically rich (see Lipowsky, 1991; Safran, 1994; Nelson et al.,
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2004; Steigmann, 2018; Seifert, 1997; Ahmadpoor and Sharma, 2017 for a bird’s-eye view of the field). In particular, studies on
equilibrium thermal fluctuations of biological membranes have led to some extraordinary insights into the role of mechanics in
a host of biophysics problems such as entropic interactions between fluctuating membranes (Helfrich, 1978; Gompper and Kroll,
1989; Freund, 2012; Hanlumyuang et al., 2014), effect of edges (Biria et al., 2013; Zelisko et al., 2017), thermal fluctuations of
vesicles (Helfrich, 1973, 1986; Milner and Safran, 1987; Kleinert, 1986; Seifert, 1995), pore formation in membranes (Farago and
Santangelo, 2005), pinned membranes (Gov and Safran, 2004; Janeš et al., 2019), membrane inclusions and interactions (Santangelo
and Farago, 2007; Agrawal et al., 2016; Liang and Purohit, 2018; Carotenuto et al., 2020; Liao and Purohit, 2021) stability of
membranes (Zhong-can and Helfrich, 1989; Givli et al., 2012; Deseri et al., 2016) and electromechanical coupling (Liu and Sharma,
2013; Nguyen et al., 2013; Torbati et al., 2022) among many others. Some recent studies have also modeled biological membranes
using various computational approaches (Yuan et al., 2010; Rim et al., 2014; Liang and Purohit, 2016; Madenci et al., 2020). A
common theme in all the above studies is the reliance on linearized membrane elasticity based on the classical bending energy for a
fluid membrane proposed by Helfrich (1973). A continuum mechanics based approach has also enabled a systematic consideration
of nonlinear elasticity in the study of membrane mechanics (Steigmann, 2009; Ahmadpoor et al., 2017). Ahmadpoor and Sharma
(2016) have shown that nonlinear curvature elasticity enables an explanation of a size-dependent renormalization of the bending
rigidity especially for small vesicle sizes. Their results also reveal a cut-off radius for the vesicle size distribution consistent with
experiments but not captured by linear elasticity models (Helfrich, 1986). Most of these studies, until recently, have focused entirely
on the treatment of biological membranes as passive membranes. Here, the term passive refers to membranes that are in thermal
equilibrium. Thus, they exhibit only fluctuations that arise from thermal vibrations of membrane molecules, or in some sense, are
‘‘dead’’.

In contrast, active processes are an essential part of what defines living matter. Here, the term active refers to the quality of
biological matter to harness energy from an intrinsic or extrinsic energy source to execute specific biological functions (Ramaswamy
and Rao, 2001; Ramaswamy, 2010; Bowick et al., 2022). Prominent examples of active matter at the cellular scale are the so-called
active membranes. These active membranes contain active proteins that aid in the trafficking of molecules such as ions, lipids
or proteins, across cellular membranes as part of a variety of vital physiological processes such as endocytosis, cell division, cell
motility, or homeostasis. The proteins are often recruited at precise locations and times on cellular membranes to perform specific
operations and are fueled by energy derived from an external source. As these active proteins perform their functions, they exert
forces on the membrane that could be generated by a chemical reaction such as actin polymerization, adenosine triphosphate (ATP)
hydrolysis, mechanical stresses, electric fields or directly from light. These forces in turn cause the membranes to exhibit active
fluctuations that are distinct from passive or equilibrium thermal fluctuations.

This leads to an intriguing question: how do active fluctuations impact membrane morphology, and dynamics? We seek answer
to this question by looking at the fascinating case of flickering of red blood cells first observed more than a century ago, in
1890 (Browicz, 1890; Turlier and Betz, 2018). The flickering was initially thought to be a result of thermal fluctuations, akin to
Brownian motion of microscopic particles. Only recently, substantial experimental evidence has pointed to an active origin of the
flickering of red blood cells. In one study (Blowers et al., 1951), the flickering was observed to be correlated to ion transport driven
by ATP hydrolysis which implied that the flickering was a manifestation of active fluctuations. A recent experimental study (Turlier
et al., 2016) provided compelling evidence for the active nature of red blood cell flickering by showing that the flickering directly
violates equilibrium statistical mechanics, proving the presence of non-equilibrium active forces driving membrane movement. Thus,
the capability to measure active fluctuations and distinguish them from passive thermal fluctuations using modern experimental
techniques conclusively resolved this 125 year old controversy.

It is now well-established that there can be a variety of sources for active forces. In the last two decades, active membrane
fluctuations originating from ion pumps have been the focus of pioneering biophysics studies, both from theoretical, and experi-
mental perspectives (Prost and Bruinsma, 1996; Manneville et al., 1999; Ramaswamy et al., 2000; Lin et al., 2006; Loubet et al.,
2012; Lacoste and Bassereau, 2014; Turlier and Betz, 2019). These studies show that the activity of ion pumps leads to significant
modifications in the fluctuation properties of vesicles, and can be measured as changes in the fluctuation amplitude, in the effective
membrane tension or in the excess surface area. Fig. 1 shows a simple illustration of the observable difference between passive and
active membranes. When both are subjected to an external energy source, the active proteins embedded in active membranes are
switched ‘‘on’’ and enhance the fluctuations of the active membrane due to their activity whereas the passive membrane continues
to exhibit thermal fluctuations. In fact, experimental measurements have revealed that the variation of the surface tension with
change in excess area is noticeably different for passive and active membranes indicating the contribution from active fluctuations
in the latter. Besides ATP or photon driven ion pumps, lipid transport systems such as flippases may also contribute to active
fluctuations (Hankins et al., 2015), as well as membrane-fusion and fission of transport vesicles (Rao and Sarasij, 2001). Active
fluctuations can also originate from the interaction of the membrane with the underlying cytoskeleton, such as the spectrin network
or the actomyosin cortex (Fournier et al., 2004; Fodor et al., 2015). The cytoskeleton may exert tangential and normal forces on
the membrane under the action of molecular motors, or via polymerization of filaments. A recent experimental and numerical study
has shown that non-equilibrium fluctuations can also be caused by bacteria–membrane contact forces (Takatori and Sahu, 2020).

Recently, Liao et al. (2020) have studied the fluctuations of ‘‘active’’ filaments. It is interesting to note that their results for active
fluctuations of a one-dimensional chain model are analogous to those obtained for two-dimensional membranes. Buskermolen et al.
(2019) identified active fluctuations and concomitant movement of cells under the action of active forces and proposed a novel
approach based on maximizing the entropy subject to certain constraints arising from activity of the cell. In this regard, Huang et al.
(2021) propose an interesting theoretical and computational approach for using fluctuation theorems to understand non-equilibrium
2
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Fig. 1. Schematic to illustrate the difference between passive and active membranes. When subjected to an external energy source, active proteins exert
non-thermal forces that dramatically enhance the fluctuations of active membranes compared to passive membranes which exhibit thermal fluctuations only.

All these studies, and many others, point to the growing consensus in the scientific community that it is imperative to develop
an understanding of active matter for a more complete understanding of biological phenomena and processes, which entails going
beyond equilibrium statistical mechanics. They also highlight the vital role of mechanics in quantifying the signature of activity in
cells, vesicles, and membranes and associated cellular functions.

Many different statistical mechanics approaches have been developed to study systems that are not in thermal equilibrium and
the literature spans several decades (Prigogine, 2017; Zubarev, 1974; Dougherty, 1994; Pathria and Beale, 2011; Sethna, 2006).
Our approach is rooted in the Langevin theory of Brownian motion which involves solving equations of motion that describe the
evolution of a system driven by random forces. This approach falls under a broader category of stochastic methods that focus on the
role of fluctuations in non-equilibrium systems that are near equilibrium. The framework is predicated on the fluctuation–dissipation
theorem to study how energy is dissipated and how work is done in systems that are driven away from equilibrium. Approaches
based on the master equation form another class of non-equilibrium statistical mechanics methods which involve a set of differential
equations that describe the time evolution of the probability distribution of the system. Fokker–Planck equation is a special case
of the master equation which assumes a continuous probability distribution for a dissipative system and hence yields a partial
differential equation which is often easy to work with in cases where directly solving equations of motion is not feasible. Although
these methods have proved to be useful in studying systems close to equilibrium, they have demonstrated success in modeling
systems far from equilibrium on a case by case basis. A significantly different approach is the so-called maximum caliber approach
which presents a variational principle for non-equilibrium processes and focuses on probabilities of pathways or trajectories instead
of states (Jaynes, 1980; Ghosh et al., 2020). Finally, computational methods, such as molecular dynamics or Monte Carlo methods,
have gained rapid prominence in recent years in understanding non-equilibrium behavior especially for their value in going far from
equilibrium, although computational constraints have hindered their success in simulating non-equilibrium problems.

The goal of this paper is to develop an understanding of the mechanics of active membranes from a continuum mechanics
viewpoint. To this end, we address the following subjects in this paper:

• We present a continuum theory to develop the non-equilibrium statistical mechanics of active membranes based on a
variational formulation. Although studies considering the dynamics of active fluid membranes may be found in the physics
literature starting with the pioneering work of Prost and Bruinsma (1996), our approach is strongly connected to principles
of continuum mechanics. The general theory developed here provides a unifying ‘‘mechanics-based’’ framework to understand
and build upon seemingly disparate but insightful prior works in this field. The framework will also facilitate extending
the theory to biophysics problems not considered in this work such as entropic interactions between active membranes,
inclusion–inclusion interactions in active membranes, or interplay of electromechanical coupling and activity in membranes.

• A specific highlight of our study is that we incorporate nonlinear curvature elasticity in the continuum theory for active
membranes. Existing treatment of active fluctuations describes membranes using the classical quadratic Helfrich–Canham
hamiltonian. Recently, Ahmadpoor and Sharma (2016) have showed that nonlinear considerations gain prominence especially
in the context of large-curvature or small-sized (passive) vesicles in the absence of surface tension. Here, we investigate the role
of nonlinear curvature elasticity in vesicles made of active membranes. We obtain a surprising, albeit convenient, result that
despite the nonlinear nature of the problem, the over-damped Langevin equation for a quasi-spherical vesicle remains linear
and hence amenable to solutions found in the literature. The nonlinear curvature elasticity simply modifies the coefficients in
the Langevin equation. Our model also reveals that nonlinear curvature elasticity renormalizes the surface tension.

• Using our continuum theory for active membranes, we study the statistical mechanics of active quasi-spherical vesicles with
nonlinear curvature elasticity. We derive closed-form results for their fluctuation spectra. We present numerical results for
a certain class of ‘‘curvature-inducing’’ and ‘‘direct’’ active forces to elucidate the interplay of activity, surface tension, and
nonlinear curvature elasticity, especially in the case of smaller vesicles. To understand the implication of activity, we reexamine
the problem of vesicle size distribution assuming active vesicles to be in thermal equilibrium. These preliminary numerical
results illustrate that active vesicles may attain vesicle size distributions that are deemed improbable for passive vesicles
governed only by thermal fluctuations.
3
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The outline of the paper is as follows. We begin with a brief overview of the well-established field of equilibrium statistical
echanics of membranes in Section 2. The intent of this section is to distinguish between the equilibrium statistical mechanics

reatment of passive membranes and non-equilibrium statistical mechanics considerations required for active membranes. In
ection 3, we establish the general theoretical framework for active membranes based on principles of continuum mechanics
nd variational formulation. As an illustrative example, we apply the theory to quasi-planar membranes and derive closed-form
xpressions for fluctuation spectra for passive and active membranes. Section 4 presents the statistical mechanics of passive and
ctive closed membranes (vesicles) based on our continuum model. We derive closed-form results for active vesicles with nonlinear
urvature elasticity. We present numerical results for fluctuation spectra for vesicles subjected to different types of active forces and
iscuss the interplay between activity, surface tension and nonlinear elasticity. In Section 5, we revisit the problem of vesicle size
istribution to furnish insights into the effect of active fluctuations in comparison with thermal fluctuations. We close our paper
ith Section 6 which summarizes the highlights of the work and discusses avenues for future studies.

. A brief review of continuum mechanics of passive membranes

.1. Mathematical preliminaries and general framework

In continuum mechanics, membranes are described as elastic sheets that are resistant to change in area or in-plane deformations,
ut can bend easily with out-of-plane deformation (Phillips et al., 1998). Mathematically, we represent the membrane as a smooth
rientable surface S in three-dimensional space (Fig. 2). Let 𝐧 be a unit normal field on S. The surface projection tensor can be

defined as

𝐏 = 𝐈 − 𝐧⊗ 𝐧 , (1)

with 𝐈 being the three-dimensional identity tensor. Given scalar- and vector-valued fields 𝑓 and 𝐠, their surface gradients ∇𝑆𝑓 and
𝑆𝐠 are defined using three-dimensional gradients ∇𝑓 𝑒 and ∇𝐠𝑒

∇𝑆𝑓 = 𝐏∇𝑓 𝑒, ∇𝑆𝐠 = 𝐏∇𝐠𝑒 , (2)

here 𝑓 𝑒 and 𝐠𝑒 are smooth extensions of superficial fields 𝑓 and 𝐠. Similarly, the surface divergence div𝑆 and surface Laplacian
𝑆 are defined as

div𝑆𝐠 = 𝐏 ⋅ ∇𝐠𝑒, 𝛥𝑆𝑓 = div𝑆 (∇𝑆𝑓 ) . (3)

hen, the curvature tensor can be expressed as (Biria et al., 2013)

𝐋 = −div𝑆𝐧 , (4)

nd the mean curvature 𝐻 , and the Gaussian curvature 𝐾 are defined as

𝐻 = 1
2
tr𝐋, 𝐾 = 1

2
[(tr𝐋)2 − tr𝐋2] . (5)

Specifically, biological membranes are regarded as fluid membranes that typically possess only bending elastic energy. In-plane
stretching is uncoupled with bending deformation. Thus, the total potential energy of the membrane is defined as (Biria et al.,
2013)

 = ∫S
𝜓̄(𝐻,𝐾) 𝑑S , (6)

where 𝜓 = 𝜓̄(𝐻,𝐾) is the elastic energy density and is a function of the mean curvature 𝐻 , and the Gaussian curvature 𝐾. In order
to accommodate the constraint on area, we consider the augmented functional

 = ∫S
(𝜓 + 𝜎) 𝑑S , (7)

where 𝜎 is the Lagrange multiplier associated with the areal constraint. Physically, 𝜎 is the surface tension in the membrane
that describes the energy cost for change in membrane area due to deformation. Furthermore, most studies based on linearized
curvature elasticity assume the elastic energy density to be quadratic and expressed using the renowned Helfrich–Canham–Evans
Hamiltonian (Canham, 1970; Helfrich, 1973; Evans, 1974),

𝜓̄(𝐻,𝐾) = 1
2
𝜅(𝐻 −𝐻0)2 + 𝜅̄(𝐾 −𝐾0) , (8)

here 𝜅 and 𝜅̄ are the bending moduli that represent the energetic costs associated with changes in 𝐻 and 𝐾 respectively. 𝐻0 and
0 denote the corresponding spontaneous curvatures.

If we consider an infinite quasi-planar membrane, that is, an infinite membrane fluctuating around a mean flat position, a
onvenient description is based on the Monge parametrization. Here, the out-of-plane deformation is expressed in terms of the local
eight ℎ(𝐫) where 𝐫 = (𝑥, 𝑦)T is the position vector in the flat reference configuration. That is, the three-dimensional position vector
f a point on the membrane is given by 𝐑 = (𝑥, 𝑦, ℎ(𝐫))T. The unit normal vector and the areal Jacobian can be written as,

𝐧 = 1
√

2
(−∇ℎ(𝐫), 1), 𝐽 =

√

1 + |∇ℎ(𝐫)|2 . (9)
4
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Consequently, the mean and Gaussian curvatures take the form (Deserno, 2015; Torbati et al., 2022)

𝐻 = ∇ ⋅

⎛

⎜

⎜

⎜

⎝

∇ℎ(𝐫)
√

1 + |∇ℎ(𝐫)|2

⎞

⎟

⎟

⎟

⎠

, 𝐾 =
det(∇∇ℎ(𝐫))

(1 + |∇ℎ(𝐫)|2)2
. (10)

Under small gradient approximation, ∇ℎ ≪ 1,

𝐻 ≈ 𝛥ℎ(𝐫) . (11)

According to the Gauss–Bonet theorem (Kreyszig, 1991), for a surface with no boundaries and in the absence of topological changes,
the contribution to the membrane potential energy from the Gaussian curvature vanishes. Then, neglecting spontaneous curvature
and the contribution from Gaussian curvature in Eq. (8), the total potential energy given by Eq. (7) becomes,

 = 1
2 ∫𝑆0

𝑑𝑥𝑑𝑦 [𝜅(𝛥ℎ)2 + 𝜎(∇ℎ)2] (12)

, where 𝑆0 is the flat parametric domain. Under static equilibrium, an elastic sheet will occupy a configuration that minimizes this
potential energy. In fact, under zero spontaneous curvature and no external forces, it will occupy a flat, undeformed configuration.
However, this description holds true only at zero Kelvin temperature.

2.2. Fluctuations of passive membranes — equilibrium analysis

At finite temperature, there is a finite probability of finding the membrane away from the perfectly flat configuration given by
the Boltzmann formula (Sethna, 2006),

𝑝𝑖 ∝ exp(−𝐸𝑖∕𝑘𝐵𝑇 ) . (13)

Here, 𝑝𝑖 is the probability of the 𝑖th state, 𝐸𝑖 is the associated energy, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the temperature.
Hence, a membrane always exhibits thermal fluctuations around its static equilibrium configuration at non-zero temperatures. The
probability distribution is typically normalized by defining the partition function 𝑍 as the sum of probabilities of all modes,

𝑍 =
∑

𝑖
exp(−𝐸𝑖∕𝑘𝐵𝑇 ) . (14)

Using a Fourier series representation for the height function, ℎ(𝐫) = ∑

𝐪 ℎ𝐪𝑒
𝑖𝐪⋅𝐫 in Eq. (12), we get the potential energy in Fourier

pace as (Deserno, 2015)

 = 𝐴
2
∑

𝐪
|ℎ𝐪|

2 [

𝜅𝑞4 + 𝜎𝑞2
]

, (15)

where 𝐴 is the area of the flat membrane. 𝑞 = |𝐪| is the magnitude of the wave vector 𝐪 introduced in the Fourier series
representation. The statistical (ensemble) average of any physical quantity 𝛷, with value 𝛷𝑖 in the 𝑖th state, is determined using the
Boltzmann distribution

⟨𝛷⟩ = 𝑍−1
∑

𝑖
𝛷𝑖 exp(−𝐸𝑖∕𝑘𝐵𝑇 ) . (16)

Since the energy specified in Eq. (12) is quadratic, the ensemble average can be computed analytically. Alternatively, we take
recourse in a fundamental result of equilibrium statistical mechanics, the equipartition theorem, which states that each mode
contributes 𝑘𝐵𝑇 ∕2 to the total energy when the energy is quadratic and hence the modes are harmonic and uncoupled (Sethna,
2006). This directly gives us the fluctuation spectrum for the membrane as (Helfrich, 1975)

⟨|ℎ𝐪|
2
⟩ =

𝑘𝐵𝑇
𝐴(𝜅𝑞4 + 𝜎𝑞2)

. (17)

This formulation provides an elegant means to determine membrane properties such as bending rigidity from fluctuations data
obtained from experiments, and possibly molecular simulations. Since surface tension 𝜎 is introduced as a Lagrange multiplier for
the area constraint, it is determined by measuring the change in area. We also wish to note that it is straightforward to apply the
above derivation based on equilibrium statistical mechanics to vesicles and the fluctuation spectra is obtained in terms of spherical
harmonics (Helfrich, 1986).

Thus, combining the tools of continuum mechanics and equilibrium statistical mechanics furnishes a powerful way to extract the
mechanical properties of membranes simply by analyzing their thermal fluctuations. These methods have been successfully applied
in biology (Safran, 1994; Nelson et al., 2004) as well as materials science (Ahmadpoor and Sharma, 2017; Hoyt et al., 2010; Chen
and Kulkarni, 2017, 2013; Ahmadpoor et al., 2017).
5
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Fig. 2. Schematic of a smooth orientable surface S in three-dimensional space. 𝐑(𝑠1 , 𝑠2) denotes the position vector of a point on the surface parametrized by
coordinates (𝑠1 , 𝑠2) fluctuating in a three-dimensional fluid. 𝐧 denotes the normal to the surface at a given point.

3. A continuum theory for active membranes

In this section, we present a continuum theory for active membranes. The key distinction from the preceding section is that due
to the non-thermal origins of active fluctuations, we need to employ tools from non-equilibrium statistical mechanics and consider
the dynamics of the membrane fluctuating in a viscous medium. Although studies considering the dynamics of fluid membranes
are found in biophysics literature, and we recover their results for the statistical mechanics of active membranes, our approach is
strongly connected to principles of continuum mechanics and presents a unifying framework for the study of active membranes.

In Section 3.1, we present the general framework for the continuum theory based on a variational formulation. Our interest
is primarily in the evolution of the membrane in the viscous medium. However, this problem is not amenable to an analytical
solution. Following the numerous prior studies on dynamics of fluid membranes (Turlier and Betz, 2018), the issue is circumvented
by solving the Stokes’s equation for the embedding fluid and recovering the equation for the dynamics of the membrane by applying
appropriate traction and displacement boundary conditions on the fluid-membrane interface.

In Sections 3.2 and 3.3, we use quasi-planar membranes as illustrative examples and respectively summarize the statistical
mechanics of passive and active membranes derived from the continuum model.

3.1. General framework

Consider a two-dimensional fluid membrane occupying a domain S and embedded in a Newtonian incompressible fluid with
viscosity 𝜂. For convenience, the fluid is assumed to occupy three-dimensional infinite space. Let 𝐑(𝑠1, 𝑠2) be the position vector of
a point on the membrane parametrized by (𝑠1, 𝑠2) and 𝐱 be the position vector of a point in the three-dimensional bulk fluid.

Consistent with prior studies, we only consider viscous dissipation in the embedding fluid as it is generally understood to be the
dominant dissipation mechanism (Seifert, 1999; Turlier and Betz, 2018; Lacoste and Bassereau, 2014). The membrane is assumed
to be impermeable to the fluid.

Because the system of interest, the cellular fluid, belongs to the low Reynolds number regime, inertial forces are negligible.
Then, the governing equations for the fluid can be derived based on Onsager’s variational principle which yields the familiar Stokes
equations for hydrodynamics. Denoting the velocity of a fluid particle with position vector 𝐱 ∈ R3 by 𝐕(𝐱), the Rayleigh dissipation
potential that characterizes the energy dissipated as the fluid deforms is given by Arroyo and DeSimone (2009)

[𝐕] = 𝜂 ∫R3
𝐃 ∶ 𝐃 𝑑𝑉 , (18)

where the rate of deformation tensor 𝐃 is the symmetric part of the velocity gradient ∇𝐕. In addition, the fluid is subjected to
a body force 𝐛(𝐱). Finally, the fluid should satisfy ∇ ⋅ 𝐕 = 0 since it is incompressible. Taking into account the incompressibility
constraint by introducing a Lagrange multiplier, the Lagrangian for the system can be written as

[𝐕, 𝑝] = 𝜂 ∫R3
𝐃 ∶ 𝐃 𝑑𝑉 − ∫R3

𝑝∇ ⋅ 𝐕 𝑑𝑉 − ∫R3
𝐛 ⋅ 𝐕 𝑑𝑉 , (19)

where the Lagrange multiplier 𝑝 can be interpreted as the pressure in the fluid. Based on Onsager’s principle, the variational
formulation for the dissipative system can be stated as (Arroyo et al., 2018),

[𝐕, 𝑝] = argmin
𝐰

argmax
𝑠

[𝐰, 𝑠] . (20)

Thus, taking variations with respect to 𝐕 and 𝑝 yields the Euler–Lagrange equations for an incompressible Stokes fluid,

− ∇ 𝑝 + 𝜂∇2𝐕 + 𝐛 = 0, in R3 , (21)
∇ ⋅ 𝐕 = 0, in R3 . (22)

At the domain of the membrane, the body force 𝐛 in the above equation represents the force exerted by the membrane on the
fluid as it deforms (or fluctuates). Thus, the body force is expressed as 𝐛 = 𝐛 + 𝑏 𝐧, where 𝐧 denotes the unit normal vector at a
6
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point on the surface of the membrane. 𝐛𝑡 is the tangential component of the body force exerted by the membrane whereas 𝑏𝑛 arises
from out-of-plane deformation of the membrane, and hence, is induced by its curvature elasticity and surface tension. In addition,
as explained later in our statistical mechanics analysis, the body force may include a white noise that accounts for the thermal
fluctuations as well as a force term associated with the active fluctuations of the membrane. The linearity of the Stokes equation
enables a simple solution approach for inhomogeneous Eq. (21). Using a Green’s function approach, the solution to the velocity
field is derived as (Seifert, 1999; Turlier and Betz, 2018)

𝐕(𝐱) = ∫R3
𝑑3𝐱′ (𝐱, 𝐱′)𝐛(𝐱′) , (23)

where the Green’s function (𝐱, 𝐱′) is also called the Oseen tensor, and has the following expression (Doi and Edwards, 1986)

(𝐱, 𝐱′) = 𝛬(𝐱 − 𝐱′)
[

𝐈 + (𝐱 − 𝐱′)⊗ (𝐱 − 𝐱′)
|𝐱 − 𝐱′|2

]

, (24)

with 𝛬(𝐱) = 1∕8𝜋𝜂|𝐱|. Note that this solution is valid throughout the domain of the fluid. Assuming no-slip conditions at the
membrane implies that the velocity of a fluid particle at the membrane should be equal to the velocity of the membrane at that
point. That is,

𝜕
𝜕𝑡
𝐑(𝑠1, 𝑠2) = 𝐕(𝐑(𝑠1, 𝑠2)) . (25)

Eq. (25) provides a description of the time evolution of the fluid membrane deforming in a viscous fluid. The normal component of
Eq. (25) describes the shape change (or out-of-plane deformation) of the membrane as it relates the normal velocity of the membrane
at a point to the normal variation of the membrane potential energy. For membranes without boundaries, the tangential variation
of the membrane energy only has contribution from the surface tension and not from the bending energy since 𝜓(𝐻,𝐾) does not
xplicitly depend on the parametrization coordinates (𝑠1, 𝑠2). Thus, the tangential component of Eq. (25) simply predicts a non-
niform surface tension which is needed to ensure local incompressibility which, in turn, is accommodated by flow of lipid molecules
ithin the membrane (Seifert, 1999). Hence, it is neglected in most prior studies on passive and active membranes. We do note that

angential variations become relevant when boundary conditions, such as in the case of edges or pores, are considered (Steigmann
t al., 2003; Arroyo and DeSimone, 2009; Biria et al., 2013) which are not pursued in the present study.

.2. Fluctuations of passive membranes — dynamic analysis

Here, we apply the continuum theory developed above to study equilibrium thermal fluctuations of planar membranes as an
llustrative example. The statistical mechanics results presented here are found in literature. We revisit the classical case of a passive
embrane from Section 2 but consider it embedded in a viscous fluid. We consider a quasi-planar membrane and describe it using
onge representation as before. As discussed in the preceding section, the normal component of Eq. (25) yields the shape evolution

f the membrane. In thermal equilibrium, 𝑏𝑛 includes two terms — the normal component of the membrane elastic force and a
andom noise that accounts for collisions between the fluid particles and the membrane. In Monge gauge, the normal velocity of
he membrane at a point is given by 𝜕ℎ

𝜕𝑡 . Then, substituting Eq. (23) in Eq. (25), the equation for the evolution of the membrane
height ℎ(𝐫, 𝑡) is obtained as

𝜕ℎ
𝜕𝑡

(𝐫, 𝑡) = ∫R3
𝑑𝐫′ 𝛬(𝐫 − 𝐫′)

[

− 𝛿
𝛿ℎ(𝐫, 𝑡)

+ 𝜉th(𝐫, 𝑡)
]

, (26)

where the variational derivative of the potential energy of the membrane in Eq. (12) with respect to the membrane height ℎ is
derived as

𝛿
𝛿ℎ

= 𝜅𝛥𝛥ℎ − 𝜎𝛥ℎ , (27)

and 𝜉th(𝐫, 𝑡) is a white noise with superscript ‘‘th’’ denoting the thermal origin of the noise. Substituting Eq. (27) and taking the
spatial Fourier transform of Eq. (26), yields the well-known over-damped Langevin equation for a membrane (Cai and Lubensky,
1994, 1995; Prost and Bruinsma, 1996)

𝜕ℎ𝐪(𝑡)
𝜕𝑡

= 𝛬𝐪

[

−(𝜅𝑞4 + 𝜎𝑞2)ℎ𝐪(𝑡) + 𝜉th𝐪 (𝑡)
]

, (28)

where 𝛬𝐪 = 1∕4𝜋𝜂𝑞 and 𝑞 = |𝐪|. According to the Langevin theory of Brownian motion, the thermal noise has zero mean and its
auto-correlation function is defined such that the fluctuation–dissipation relation is satisfied (Sethna, 2006; Pathria and Beale, 2011;
Turlier and Betz, 2018),

⟨𝜉th𝐪 (𝑡)𝜉th𝐪′ (𝑡
′)⟩ =

2𝑘𝐵𝑇
𝛬𝐪

𝛿(𝐪 − 𝐪′)𝛿(𝑡 − 𝑡′) . (29)

We now define the temporal Fourier transform of ℎ𝐪(𝑡) using the relations

ℎ𝐪(𝜔) =
∞
ℎ𝐪(𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡 , (30)
7
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and

ℎ𝐪(𝑡) =
1
2𝜋 ∫

∞

−∞
ℎ𝐪(𝜔)𝑒𝑖𝜔𝑡 𝑑𝜔 . (31)

Substituting the inverse Fourier transform Eq. (31) for ℎ𝐪(𝑡) in Eq. (28) we get,

𝑖𝜔ℎ𝐪(𝜔) = −𝛬𝐪(𝜅𝑞4 + 𝜎𝑞2)ℎ𝐪(𝜔) + 𝛬𝐪𝜉
th
𝐪 (𝜔) . (32)

Here, we take the time derivative on the left hand side of Eq. (28) inside the integral since the inverse Fourier transform integral is
over 𝜔. On simplifying, we get

ℎ𝐪(𝜔) =
𝛬𝐪𝜉th𝐪 (𝜔)

𝜔2 + 𝜔2
𝑞
(−𝑖𝜔 + 𝜔𝑞) , (33)

where 𝜔𝑞 is the membrane relaxation rate for mode 𝐪 given by

𝜔𝑞 = 𝛬𝑞(𝜅𝑞4 + 𝜎𝑞2) =
𝜅𝑞3 + 𝜎𝑞

4𝜋𝜂
. (34)

Taking the statistical average of |ℎ𝐪(𝜔)|
2 in Fourier space and using the property of the thermal noise, the mode-dependent

autocorrelation function is obtained as

⟨|ℎ𝐪(𝜔)|
2
⟩ =

2𝑘𝐵𝑇𝛬𝑞
𝜔2 + 𝜔2

𝑞
. (35)

Finally, by integrating ⟨|ℎ𝐪(𝜔)|
2
⟩ over all frequencies 𝜔, the exact result for the equilibrium membrane fluctuations obtained from

static analysis (Eq. (17)) is recovered. It seems interesting that even if we consider the membrane fluctuating in a viscous medium,
the fluctuation spectra of a passive membrane fluctuating only under the influence of thermal noise does not depend on the viscosity
of the embedding fluid. However, this is rather a consequence of how the auto-correlation for the thermal noise is defined in Eq. (29)
so as to obey the fluctuation–dissipation theorem which provides a means of understanding how systems which are not in equilibrium
finally achieve thermal equilibrium through exchange of energy between thermal fluctuations and dissipative mechanisms (Pathria
and Beale, 2011).

3.3. Fluctuations of active membranes

Here, we demonstrate the application of the continuum theory developed above to study non-equilibrium (active) fluctuations
of planar membranes. To this end, Eq. (28) is used as a starting point for modeling fluctuations of a quasi-planar membrane in a
viscous medium subjected to thermal and active forces by appending the Langevin equation with additional forces due to active
proteins and processes (Prost and Bruinsma, 1996; Manneville et al., 1999; Ramaswamy et al., 2000; Ramaswamy and Rao, 2001;
Lin et al., 2006; Gov, 2004; Loubet et al., 2012). The active forces are incorporated in the body force through an additional noise
term with active origins. Thus, the over-damped Langevin equation with active forces in the Fourier domain can be directly written
as

𝜕ℎ𝐪(𝑡)
𝜕𝑡

= −𝛬𝐪(𝜅𝑞4 + 𝜎𝑞2)ℎ𝐪(𝑡) + 𝛬𝐪𝜉
th
𝐪 (𝑡) + 𝛬𝐪𝜉

a
𝐪(𝑡) , (36)

where 𝜉a𝐪(𝑡) is the Fourier transform of the active noise with the superscript ‘‘a’’ denoting the active origin of the force. In contrast to
the thermal noise, the random active noise, 𝜉a𝐪(𝑡), is un-correlated in space but correlated exponentially in time. This is reasonable
because if density fluctuations due to the diffusion of active proteins in the lipid bilayer are neglected, the active noise term can
be assumed to be uncorrelated in space. In addition, active force due to an active protein switching between ‘‘on’’ and ‘‘off’’ states
is expected to be exponentially correlated in time. Thus, the active force is assumed to have zero mean and the following form for
the auto-correlation function (Turlier and Betz, 2018),

⟨𝜉a𝐪(𝑡)𝜉
a
𝐪′ (𝑡

′)⟩ = 𝛤 a
𝑞 𝛿(𝐪 − 𝐪′)𝑒−(𝑡−𝑡′)∕𝜏a . (37)

𝜏𝑎 is a characteristic time-scale for the active process, and 𝛤 𝑎𝑞 is the amplitude of the active noise. The characteristics of the active
noise source term need not be constrained a priori and will depend on the source of active forces, but it can be seen from Eq. (37) that
when it is non-vanishing, equilibrium is no longer valid as the force does not satisfy the fluctuation–dissipation theorem. Based on
experimental evidence, many prior studies on active membranes consider primarily two types of active forces — the so-called direct
force and curvature force. Here, we summarize the approach taken in Lin et al. (2006) and Turlier and Betz (2018) to incorporate
the specific nature of the active force into the model through 𝛤 𝑎𝑞 and 𝜏𝑎, as described below.

• A direct force exerted by a protein is implemented as

𝛤 𝑎𝑞 = 𝜌𝑎𝐹
2
𝑎 , (38)

where 𝜌𝑎 is the density of active proteins and 𝐹𝑎 is the normal force exerted by a protein. Forces induced by the cytoskeleton,
8
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bacteriorhodopsin (BR), a light-activated proton pump embedded in the cell membranes of certain bacteria and Ca2+-ATPase,
a transmembrane protein that is known to change the bending rigidity of the membrane in the presence of ATP. We note that
direct forces can either push the membrane up or down, and hence 𝐹𝑎 can be positive, or negative (or zero when the active
protein is in an ‘‘off’’ state). Since 𝛤 𝑎𝑞 is the amplitude of the auto-correlation function for the active noise, it is taken to depend
on 𝐹 2

𝑎 to make it independent of the sign or direction of the direct force. 𝜏𝑎 is the time constant with which the force turns
on and off. For instance, the time period for the BR photocycle is 5 ms (Lin et al., 2006).

• A curvature force is implemented through the spontaneous curvature as

𝛤 𝑎𝑞 = 𝜌𝑎(𝜅𝑐0𝑏2𝑞2)2 , (39)

where 𝑐0 is the positive or negative spontaneous curvature, 𝑏2 is the area occupied by the active proteins, and 𝜅 is the bending
modulus of the membrane. For an active protein, the spontaneous curvature induced by it could be 𝑐0 or −𝑐0 or 0. Hence, the
dependence of 𝛤 𝑎𝑞 is taken to be on 𝑐20 to make it independent of the sign of the spontaneous curvature. Based on experiments, it
has been shown that both BR and Ca2+-ATPase proteins can induce local curvatures and affect the properties of the membrane
during their activity (Lin et al., 2006).

As in the preceding section, we substitute the inverse Fourier transform in time of ℎ𝐪(𝑡) in Eq. (36) to obtain an algebraic equation
for ℎ𝐪(𝜔) in Fourier space. Using the statistical correlations for the thermal noise (Eq. (29)) and active noise (Eq. (37)), the
auto-correlation function for an active membrane is derived as,

⟨|ℎ𝐪(𝜔)|
2
⟩ = 1

𝜔2 + 𝜔2
𝑞

[

2𝑘𝐵𝑇𝛬𝑞 +
2𝜏𝑎𝛬2

𝑞𝛤
𝑎
𝑞

1 + 𝜔2𝜏2𝑎

]

. (40)

he above result corresponds to steady state. Time correlation functions can also be derived for the given over-damped Langevin
quation, Eq. (36). Eisenstecken et al. (2016) calculated the time correlations for relaxation dynamics of active filaments. Here,
e are interested in steady state properties in the long time limit which are not influenced by initial conditions. Thus, integrating
q. (40) over all the frequencies yields the steady-state fluctuation spectrum ⟨|ℎ𝐪|

2
⟩ as

⟨|ℎ𝐪|
2
⟩ =

𝑘𝐵𝑇
𝜅𝑞4 + 𝜎𝑞2

+
𝛬2
𝑞𝛤

𝑎
𝑞

𝜔𝑞
1

(𝜔𝑞 + 1∕𝜏𝑎)
. (41)

omparing Eqs. (17) and (41) reveals that the fluctuations of an active membrane are influenced not only by the active forces
hrough parameters 𝛤 𝑎𝑞 and 𝜏𝑎 but also the viscosity of the embedding medium. Specifically, as demonstrated by the pioneering
ork of Prost and Bruinsma (1996) and following studies (Ramaswamy et al., 1999; Gov, 2004; Turlier and Betz, 2018), Eq. (41)

hows that active forces indeed enhance the fluctuations of active membranes. This signature of active membranes provides a route
o identifying active versus passive membranes by measuring their fluctuations through experiments.

Note that the fluctuation spectra for passive and active membranes given by Eqs. (17) and (41) respectively depend on the surface
ension through the function 𝜔𝐪. Since the surface tension is introduced as a Lagrange multiplier, it is determined self-consistently
y using the areal constraint. Specifically, the change in surface area is calculated as (Turlier and Betz, 2018),

𝛥 =
𝐴𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 − 𝐴

𝐴
= 1

2𝐴 ∫𝐴
𝑑𝐫 |∇ℎ(𝐫)|2 ≈ 1

2𝐴
∑

𝐪
𝑞2⟨|ℎ(𝐪)|2⟩ . (42)

he above equation can be solved numerically to estimate the surface tension by using the relevant expression for ⟨|ℎ(𝐪)|2⟩ for
assive or active membrane.

. Fluctuations of active vesicles with nonlinear curvature elasticity

This section presents the statistical mechanics of closed membranes or vesicles in a viscous medium based on the continuum
odel developed in Section 3. Although results based on linear elasticity for active vesicles are found in the physics literature,
specific highlight of our work is that we extend the continuum theory to incorporate nonlinear curvature elasticity. Thus, this

ection contains the key results of this paper.
In Section 4.1, we first present the relevant mathematical expressions in curvilinear coordinates and apply the general framework

f Section 3 to quasi-spherical vesicles. Next, we extend these calculations by incorporating nonlinear curvature elasticity and
ompare our results with the work of Ahmadpoor and Sharma (2016) under equilibrium considerations. In Section 4.2, we derive
he results for the statistical mechanics of passive vesicles with nonlinear curvature elasticity. In Section 4.3, we derive the results
or the statistical mechanics of active vesicles with nonlinear curvature elasticity subjected to active forces and compare our results
ith those reported by Loubet et al. (2012). Section 4.4 presents a discussion on how surface tension is incorporated in the study of

he dynamics of membranes and its implications. In Section 4.5, we present numerical results for the fluctuation spectra for active
esicles and discuss the interplay of surface tension, active forces, and constitutive nonlinearity.
9
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Fig. 3. Schematic of a fluctuating vesicle of mean radius 𝑟0. 𝑈 (𝜃, 𝜙) denotes the perturbation normal to the surface.

4.1. General framework

Let S be the surface of a fluctuating quasi-spherical vesicle with mean radius 𝑟0, defined as S ∶= {𝐑 ∈ R3 ∶ |𝐑| = 𝑟0}. The
membrane thickness is assumed to be 𝑑. Consider a small perturbation of the surface S to S𝜀 which takes a point on S with position
vector 𝐑 to 𝐑𝜀,

𝐑𝜀 = 𝐑 + 𝜀𝐮 , (43)

with

𝐮 = 𝐮𝑡 + 𝑈𝐧 = 𝑢𝛼𝐚𝛼 + +𝑈𝐧, 𝛼 = 1, 2 , (44)

where 𝑈 (𝜃, 𝜙) is the normal variation (Fig. 3) and 𝑢𝛼 are the tangential variations along directions 𝐚𝛼 in the tangent plane. Since
there are no topological changes in the problem, we assume that the bending energy depends only on the mean curvature; that is,
referring to Eq. (6), 𝜓 = 𝜓̄(𝐻). Then the variational derivative of the potential energy with respect to 𝑈 is derived as (Biria et al.,
2013)

𝑈 = 𝜓̄𝐻 (2𝐻2 −𝐾) + 1
2
𝛥𝑆 𝜓̄𝐻 − 2𝐻(𝜓 + 𝜎) . (45)

In order to evaluate this expression, we first normalize 𝑈 with respect to the mean radius 𝑟0 by defining a dimensionless variable
𝑢(𝜃, 𝜙) = 𝑈 (𝜃, 𝜙)∕𝑟0. According to Helfrich (1986), 𝐻 can be expanded in terms of 𝑢 as follows,

𝐻 = 1
𝑟0

[

−1 + 𝑢 + 1
2
𝛥𝑢 − 𝑢2 − 𝑢𝛥𝑢

]

, (46)

while keeping terms only up to quadratic in 𝑢. Here, 𝛥 is the normalized surface Laplacian with the following expression in spherical
coordinates,

𝛥 = 1
sin 𝜃

𝜕
𝜕𝜃

(

sin 𝜃 𝜕
𝜕𝜃

)

+ 1
sin2 𝜃

𝜕2

𝜕𝜙2
. (47)

Using Eq. (46), we can also obtain expressions for 𝐻3, and 𝐻5 as follows where we have retained terms up to quadratic order. We
will need these terms when we consider nonlinear curvature elasticity later.

𝐻3 = 1
𝑟30

[

−1 + 3𝑢 + 3
2
𝛥𝑢 − 6𝑢2 − 6𝑢𝛥𝑢 − 3

4
(𝛥𝑢)2

]

, (48)

𝐻5 = 1
𝑟50

[

−1 + 5𝑢 + 5
2
𝛥𝑢 − 15𝑢2 − 15𝑢𝛥𝑢 − 5

2
(𝛥𝑢)2

]

. (49)

In contrast to the quadratic bending energy, we consider a form for 𝜓̄(𝐻) that incorporates nonlinear curvature elasticity as

𝜓̄(𝐻) = 1
2
𝜅(2𝐻)2 + 1

2
𝛾𝑐 (2𝐻)4 , (50)

where we have ignored spontaneous curvature as before. We also assume the higher order elasticity modulus to be 𝛾𝑐 = 𝜅𝑙2𝑐 . The
expression for 𝛾𝑐 shows that nonlinear considerations introduce a length-scale in the problem. Specifically, 𝑙𝑐 denotes the critical
length scale when the nonlinearity may be ignored and is typically assumed to be of the same order of magnitude as the thickness
of the membrane. A detailed discussion on the choice of higher-order curvature elasticity terms and the physical underpinnings of
𝑙𝑐 is provided by Ahmadpoor and Sharma (2016).

For convenience, we follow the convention prevalent in the biophysics community to write the bending energy in Eq. (50) as a
function of 2𝐻 rather than 𝐻 . Substituting Eq. (50) in Eq. (45), we get

𝑈 = 2𝜅𝛥𝑆𝐻 − 2𝐻 𝜎 + 16𝜅 𝑙2𝑐 (𝐻
5 + 𝛥𝑆𝐻3) . (51)

The first term arises from the (quadratic) Helfrich bending energy and the last term is a contribution from the quartic term. In
deriving Eq. (51), we have used the relation 𝐻2 − 𝐾 = 0 in spherical coordinates (Schneider et al., 1984). Recall that the static
equilibrium equation for a closed membrane is given by (Biria et al., 2013)

 = 𝑝 , (52)
10
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where 𝑝 is the osmotic pressure in the vesicle. For a spherical vesicle of radius 𝑟0, 𝐻 = −1∕𝑟0. Then, static equilibrium (in the
absence of fluctuations) yields

2𝜎∕𝑟0 − 16𝜅 𝑙2𝑐∕𝑟
5
0 = 𝑝 . (53)

This is analogous to the Young–Laplace equation (2𝜎∕𝑟0 = 𝑝) derived from linearized curvature elasticity which can also be recovered
from the above equation by setting 𝑙𝑐 → 0. This shows that an effective surface tension can be defined in the case of nonlinear
curvature elasticity which balances the osmotic pressure. To this end, observing that 𝛥𝑆𝐻3 = 3

𝑟20
𝛥𝑆𝐻 , we can rewrite Eq. (51) as

𝑈 = 2𝜅(1 + 24
𝑙2𝑐
𝑟20
)𝛥𝑆𝐻 − 2𝐻 (𝜎 − 8𝜅 𝑙2𝑐𝐻

4) . (54)

We can now define the effective surface tension as 𝜎𝑒𝑓𝑓 = 𝜎 − 8𝜅 𝑙2𝑐𝐻
4. Comparing Eq. (54) with the following expression for 𝑈

for a quadratic energy,

𝑈 = 2𝜅𝛥𝑆𝐻 − 2𝐻 𝜎 , (55)

our results show how nonlinear curvature elasticity not only modifies the bending energy but also renormalizes the surface tension.
We now expand the normalized virtual deformation 𝑢 in spherical harmonics as

𝑢(𝜃, 𝜙) =
𝓁𝑚𝑎𝑥
∑

𝓁≥0

𝓁
∑

𝑚=−𝓁
𝑢𝓁,𝑚𝑌𝓁,𝑚(𝜃, 𝜙) , (56)

where 𝑢𝓁,−𝑚 = 𝑢∗𝓁,𝑚 since 𝑢(𝜃, 𝜙) is real; 𝑌𝓁,𝑚 are separable in terms of Legendre polynomials, 𝑃𝑚𝓁 (𝜃), as

𝑌𝓁,𝑚(𝜃, 𝜙) = 𝑃𝑚𝓁 (𝜃)𝑒𝑖𝑚𝜙 , (57)

and satisfy the eigenvalue equation,

𝛥𝑌𝓁,𝑚 = −𝓁(𝓁 + 1)𝑌𝓁,𝑚 . (58)

We also define a dimensionless surface tension, 𝜎̄ = 𝜎𝑟20∕𝜅. Substituting these in the expressions given in Eqs. (46), (48), and (49),
the variational derivative for the potential energy (Eq. (51)) is expressed as

𝑈 = − 𝜅
𝑟30

∑

𝓁,𝑚
𝐸̃𝓁 𝑢𝓁,𝑚𝑌𝓁,𝑚 − 2 𝜅

𝑟30
𝜎̄𝑒𝑓𝑓 , (59)

here we use 𝐸̃𝓁 to denote the following expression,

𝐸̃𝓁 =
[

𝓁2(𝓁 + 1)2 − 2𝓁(𝓁 + 1)
]

(1 + 24
𝑙2𝑐
𝑟20
) + 𝜎̄𝑒𝑓𝑓 (𝓁 + 2)(𝓁 − 1) (60)

= (𝓁 + 2)(𝓁 − 1)

[

𝓁(𝓁 + 1)

(

1 + 24
𝑙2𝑐
𝑟20

)

+ 𝜎̄𝑒𝑓𝑓

]

, (61)

and the dimensionless effective surface tension is defined as 𝜎̄𝑒𝑓𝑓 = 𝜎̄ − 8𝑙2𝑐 𝑟
2
0𝐻

4. Also, we write the summation as

∑

𝓁,𝑚
=

𝓁𝑚𝑎𝑥
∑

𝓁≥2

𝓁
∑

𝑚=−𝓁
, (62)

where the summation starts at 𝓁 = 2 since 𝓁 = 0 corresponds to change in sphere size and 𝓁 = 1 corresponds to translation (Helfrich,
1986). If we consider only the Helfrich bending energy, the expression for 𝑈 in Eq. (55) reduces to

𝑈 = 2 𝜅
𝑟30
[−𝛥𝑢 − 1

2
𝛥𝛥𝑢] − 2 𝜅

𝑟30
𝜎̄[1 − 𝑢 − 1

2
𝛥𝑢] (63)

= − 𝜅
𝑟30

∑

𝓁,𝑚

[

𝓁2(𝓁 + 1)2 − 2𝓁(𝓁 + 1) + 𝜎̄(𝓁 + 2)(𝓁 − 1)
]

𝑢𝓁,𝑚𝑌𝓁,𝑚 − 2 𝜅
𝑟30
𝜎̄ (64)

= − 𝜅
𝑟30

∑

𝓁,𝑚
(𝓁 + 2)(𝓁 − 1) [𝓁(𝓁 + 1) + 𝜎̄] 𝑢𝓁,𝑚𝑌𝓁,𝑚 − 2 𝜅

𝑟30
𝜎̄ (65)

= − 𝜅
𝑟30

∑

𝓁,𝑚
𝐸𝓁 𝑢𝓁,𝑚𝑌𝓁,𝑚 − 2 𝜅

𝑟30
𝜎̄ . (66)

Thus, for quadratic energy, we recover the results available in existing literature ((Helfrich, 1986; Milner and Safran, 1987; Seifert,
1999; Gov, 2004) to cite a few). The only difference in Eqs. (59) and (66) is the use of 𝐸𝓁 (and 𝜎̄) in Eq. (66) and 𝐸̃𝓁 (and 𝜎̄𝑒𝑓𝑓 )
in Eq. (59). If we take 𝓁𝑐 → 0, 𝐸̃𝓁 reduces to 𝐸𝓁 . We also emphasize that, in deriving Eq. (59), we have retained only terms for 𝐻5

and 𝛥𝑆𝐻3 that are linear in 𝑢 and 𝛥𝑢 so that

𝐻5 + 𝛥 𝐻3 = 1 − 11𝛥𝑢 − 5𝑢 − 3𝛥𝛥𝑢 . (67)
11
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This is consistent with prior studies such as by Helfrich (1986) and Seifert (1999) which also retain only linear order terms in
Eq. (46) to obtain Eq. (63) in terms of 𝑢 and 𝛥𝑢. It is interesting that even while keeping only linear order terms from Eq. (46), (48),
nd (49), there is a contribution from nonlinear elasticity in the expression for 𝑈 in Eq. (59). Thus, the form for 𝑈 in Eqs. (59)

and (66) remains the same in the case of linear or nonlinear curvature elasticity when only linear terms are retained. Only the
coefficient 𝐸𝓁 is renormalized to 𝐸̃𝓁 .

4.2. Passive fluctuations under nonlinear curvature elasticity

Here, we develop the statistical mechanics of vesicles with nonlinear curvature elasticity fluctuating in a viscous medium. To
this end, we follow the prior work on passive vesicles using linear elasticity and extend the approach to incorporate constitutive
nonlinearity.

As shown for quasi-planar membranes in Section 3, using 𝑈 in the normal body force 𝑏𝑛 in Eq. (23), we can follow the Green’s
function approach to derive the over-damped Langevin equation. However, solving the Stokes equation using the Oseen tensor with
spherical harmonics is tedious (Lomholt, 2006). In order to obtain analytical results for a quasi-spherical vesicle embedded in a
three-dimensional fluid, prior studies on the dynamics of vesicles have adopted the classical Lamb’s solution to derive the Langevin
equation (Schneider et al., 1984; Milner and Safran, 1987; Seifert, 1999; Lomholt, 2006). We follow the same approach and refer
the reader to these papers for a detailed presentation of the calculations.

The Lamb’s solution is a classical result in hydrodynamics literature for fluids with low Reynolds number (Lamb, 1932; Happel
and Brenner, 1983). It describes the Stokes flow around a sphere and yields analytical results for the velocity field and pressure in a
Stokes fluid in the presence of a sphere. In the context of quasi-spherical vesicles, the Lamb’s solution provides a more straightforward
approach to analytically obtain the velocity and stress field on the surface of the quasi-spherical vesicle and obtain the over-damped
Langevin equation using spherical harmonics compared to the Green’s function approach employed for quasi-planar membranes. A
key approximation required to apply the Lamb’s solution for quasi-spherical vesicles is to assume that all stresses act on a sphere
of mean radius 𝑟0 rather than on the time-dependent vesicle configuration (Seifert, 1999). The solution is used to determine the
stress in the fluid at the vesicle surface. Traction boundary conditions are enforced to equate the normal and shear stress in the
fluid at the membrane surface with the normal and shear stress in the membrane respectively. The normal component then yields
the over-damped Langevin equation in terms of 𝑢𝓁,𝑚.

Since nonlinear bending energy retains the same general form for 𝑈 in spherical coordinates as the conventional quadratic
energy, the expression for the over-damped Langevin equation for a passive membrane with nonlinear curvature elasticity remains
the same as found in literature and is given by

𝜂
𝛤𝓁
𝑢̇𝓁,𝑚(𝑡) = − 𝜅

𝑟30
𝐸̃𝓁𝑢𝓁,𝑚 + 𝜉𝑡ℎ𝓁,𝑚(𝑡) , (68)

where 𝐸𝓁 for a quadratic energy is now replaced with 𝐸̃𝓁 when a quartic energy term is included and 𝛤𝓁 is given by (Seifert, 1999)

𝛤𝓁 =
𝓁(𝓁 + 1)

4𝓁3 + 6𝓁2 − 1
. (69)

In the derivation of Eq. (68), we have used the fact that the surface tension term 2𝜅𝜎̄∕𝑟30 in Eq. (66) balances the osmotic pressure 𝑝.
This is the zeroth order equation obtained when the membrane force is equated to the Lamb’s solution and is not explicitly written
in the literature on dynamics of vesicles.

The last term in Eq. (68) is the thermal (white) noise and is uncorrelated in space and time. The mean and the auto-correlation
function of the thermal noise can be expressed as

⟨𝜉𝑡ℎ𝓁,𝑚(𝑡)⟩ = 0 , (70)

⟨𝜉𝑡ℎ𝓁,𝑚(𝑡)𝜉
𝑡ℎ
𝓁′ ,𝑚′ (𝑡′)∗⟩ = 2𝜂

𝑘𝐵𝑇
𝑟30

1
𝛤𝓁
𝛿𝓁𝓁′𝛿𝑚𝑚′𝛿(𝑡 − 𝑡′) . (71)

Taking Fourier transform of Eq. (68) in time, we get an expression for 𝑢𝓁,𝑚(𝜔). We can then calculate the statistical average,
⟨|𝑢𝓁,𝑚(𝜔)|

2
⟩ using the properties of the thermal noise. Integrating the result over all frequencies, we determine the fluctuation spectra

for a quasi-spherical vesicle with nonlinear curvature elasticity as

⟨𝑢𝓁,𝑚(𝑡)𝑢∗𝓁,𝑚(𝑡)⟩ =
𝑘𝐵𝑇
𝜅𝐸̃𝓁

. (72)

As expected, the form of the fluctuation spectrum with nonlinear curvature elasticity is same as that reported in literature
for quadratic energy (Schneider et al., 1984; Milner and Safran, 1987; Seifert, 1999; Lomholt, 2006) with 𝐸̃𝓁 replacing 𝐸𝓁 .
Furthermore, the above result for a passive vesicle has also been derived previously for quadratic energy using equilibrium statistical
mechanics (Helfrich, 1986). As seen for quasi-planar membranes, the fluctuation spectrum for a passive vesicle is independent of
the viscosity of the medium owing to the fluctuation–dissipation theorem.
12
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4.3. Active fluctuations under nonlinear curvature elasticity

Here, we develop the statistical mechanics of active vesicles with nonlinear curvature elasticity following the approach of
ection 4.2. To this end, we append the over-damped Langevin equation derived in the previous section (Eq. (68)) with a random
orce term accounting for active forces,

𝜂
𝛤𝓁
𝑢̇𝓁,𝑚(𝑡) = − 𝜅

𝑟30
𝐸̃𝓁 𝑢𝓁,𝑚 + 𝜉𝑡ℎ𝓁,𝑚(𝑡) + 𝜉

𝑎
𝓁,𝑚(𝑡) , (73)

where 𝜉𝑎𝓁,𝑚(𝑡) denotes the noise from active processes. We will use the form for the active force proposed by Loubet et al. (2012) for
spherical vesicles. This active noise has the following properties:

⟨𝜉𝑎𝓁,𝑚(𝑡)⟩ = 0 (74)

⟨𝜉𝑎𝓁,𝑚(0)𝜉
𝑎
𝓁,𝑚(𝑡)

∗
⟩ = 𝜒𝑎𝑥𝓁 𝛿𝓁𝓁′𝛿𝑚𝑚′ exp

[

−
|𝑡|
𝜏𝑎

]

, (75)

where 𝜏𝑎 is a characteristic correlation time of the active process studied. 𝜒𝑎 is the strength of the noise and has the dimension of
a force per unit area squared. 𝑥𝓁 is a dimensionless quantity that carries the wave number dependency of the noise. By spherical
symmetry, it can only be a function of 𝓁. Note that the form for the auto-correlation function for 𝜉𝑎𝓁,𝑚(𝑡) (Eq. (75)) is qualitatively
similar to that for 𝜉𝑎𝐪(𝑡) (Eq. (37)). Here we use the form proposed by Loubet et al. (2012) in order to easily compare our results
with their results. Assuming steady state, the fluctuation spectrum can be determined from the over-damped Langevin equation
(Eq. (73)) and the properties of the thermal and active noise as

⟨|𝑢𝓁𝑚|
2
⟩ =

𝑘𝐵𝑇
𝜅𝐸̃𝓁

(

1 + 𝜒𝑎
𝑥𝓁
𝐸̃𝓁

𝜏𝑎
𝜏𝑎 + 𝑡𝓁𝑚

)

, (76)

where

𝜒𝑎 = 𝜒𝑎
𝑟60

𝑘𝐵𝑇𝜅
, 𝑡𝓁𝑚 =

𝜂𝑟30
𝜅𝛤𝓁𝐸̃𝓁

. (77)

𝜒𝑎 is a non-dimensional measure for the strength of the noise, and 𝑡𝓁𝑚 is the correlation time for mode 𝓁 of the shape in thermal
equilibrium. It is interesting to note that the formal expression for the fluctuation spectrum with nonlinear bending energy is the
same as that for the fluctuation spectrum with quadratic bending energy with 𝐸̃𝓁 replacing 𝐸𝓁 . Furthermore, these results reveal
that there is an additional contribution to the fluctuations of active membranes proportional to the strength of the noise 𝜒𝑎. In other
words, active forces tend to modify the fluctuations of vesicles as observed in experiments.

4.4. Surface tension in fluctuating quasi-spherical vesicles

We note that there is a lot of variation and discussion in the literature on incorporating surface tension, especially in the case
of dynamics of quasi-spherical vesicles (Schneider et al., 1984; Milner and Safran, 1987; Seifert, 1995; Cai and Lubensky, 1995;
Seifert, 1999; Miao et al., 2002). Here we present a systematic explanation that we hope can provide a context for the seemingly
disparate treatment of surface tension. It also serves to clarify when the tangential component of Eq. (25) is considered and when
it is ignored in the study of dynamics of spherical vesicles.

As a Lagrange multiplier, the surface tension has to be determined from the change in area of the quasi-spherical vesicle, as shown
for planar membranes in Section 3. Following Eq. (42), the change in area of the quasi-spherical vesicle is given by (Helfrich, 1986;
Loubet et al., 2012)

𝛥 =
∑

𝓁,𝑚
⟨|𝑢𝓁𝑚|

2
⟩

(𝓁 + 2)(𝓁 − 1)
2

(78)

=
∑

𝓁

𝓁
∑

𝑚=−𝓁
⟨|𝑢𝓁𝑚|

2
⟩

(𝓁 + 2)(𝓁 − 1)
2

=
∑

𝓁

⟨|𝑢𝓁𝑚|
2
⟩

(𝓁 + 2)(𝓁 − 1)(2𝓁 + 1)
2

, (79)

where we have used the fact that ⟨|𝑢𝓁𝑚|⟩2 is independent of 𝑚. Thus, substituting the expression for fluctuation spectrum in the
above equation we can get the expressions for the area change for a passive membrane with nonlinear curvature elasticity as

2𝛥 𝜅
𝑘𝐵𝑇

=
∑

𝓁

(𝓁 + 2)(𝓁 − 1)(2𝓁 + 1)
𝐸̃𝓁

, (80)

and for an active membrane with nonlinear curvature elasticity as

2𝛥 𝜅
𝑘𝐵𝑇

=
∑

𝓁

(𝓁 + 2)(𝓁 − 1)(2𝓁 + 1)
𝐸̃𝓁

(

1 + 𝜒𝑎
𝑥𝓁
𝐸̃𝓁

𝜏𝑎
𝜏𝑎 + 𝑡𝓁𝑚

)

. (81)

These equations have to be solved numerically to estimate the surface tension in a passive or active membrane. Note that Eqs. (80)
̃

13

and (81) can be easily reduced to the case of linearized curvature elasticity by replacing 𝐸𝓁 with 𝐸𝓁 . We refer the reader to the
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papers by Seifert and coworkers for an elaborate discussion on the surface tension estimates based on different limiting cases in
passive (Seifert, 1995) and active (Loubet et al., 2012) membranes.

If we consider the fluctuations of a quasi-spherical vesicle as mere perturbations about a mean spherical shape of radius 𝑟0, it is
reasonable to assume that the surface tension is defined on the sphere. For a spherical vesicle, we recall that the surface tension 𝜎
balances the difference between the internal and external pressure. If we denote the pressure difference across the vesicle surface as
𝑝, this force balance based on linearized curvature elasticity can be written in the form of the well-known Young–Laplace equation,
2𝜎∕𝑟0 = 𝑝. Thus, the surface tension is indeed uniform over the sphere and can be determined from the areal constraint as shown
above. Now if we consider the tangential variation of the potential energy (Eq. (7)), the variational derivative is given by (Steigmann
et al., 2003; Biria et al., 2013)

𝛼 = −
𝜕𝜓
𝑢𝛼

− 𝜕𝜎
𝑢𝛼
, 𝛼 = 1, 2 , (82)

here 𝑢𝛼 are the tangential variations (Eq. (44)). Since 𝜓(𝐻) does not explicitly depend on the tangential coordinates and 𝜎 is a
onstant on the sphere surface, the above equation shows that the tangential force exerted by the membrane is zero. Thus, the
angential force balance on the sphere does not yield new information, and it is reasonable to ignore the tangential component of
q. (25) for dynamics of both passive and active vesicles.

Some studies adopt a more rigorous approach for incorporating surface tension and consider the fluctuations of the surface tension
n a quasi-spherical vesicle (Schneider et al., 1984; Seifert, 1999; Miao et al., 2002). Here, 𝜎 is expanded in spherical harmonics

along with the normal variation 𝑈 as,

𝜎(𝜃, 𝜙) = 𝜎0 +
𝓁𝑚𝑎𝑥
∑

𝓁≥2

𝓁
∑

𝑚=−𝓁
𝜎𝓁,𝑚𝑌𝓁,𝑚(𝜃, 𝜙) , (83)

where 𝜎0 corresponds to the zeroth order surface tension which is defined on the mean sphere. The higher order modes of 𝜎 are
non-uniform on the membrane surface. Following the preceding discussion, 𝜎0 balances the pressure difference across the membrane
surface and can be determined from the areal constraint. The higher modes, being non-uniform, are determined by equating the
tangential stress due to the membrane given by Eq. (82) to the tangential stress from the Lamb’s solution and solving for 𝜎𝓁,𝑚. Thus,
if we consider only the zeroth order term and ignore the higher order terms, it suffices to consider the normal component of Eq. (25)
which yields the over-damped Langevin equation for membrane shape evolution and estimate the surface tension self-consistently
from the areal constraint. Physically, this is a reasonable assumption, especially for small vesicles as they cannot accommodate
inhomogeneities on membrane surface and hence surface tension can be assumed to be a constant. In the present study, we have
followed this assumption and work only with the zeroth order term for surface tension.

4.5. Computation of fluctuation spectra of active vesicles

Here, we present the fluctuation spectra of active vesicles based on the model developed in the preceding section for some
special cases of active forces. We will focus on small size vesicles where the effect of nonlinear curvature elasticity is known to be
accentuated. In order to evaluate Eq. (76) numerically and understand the interplay of nonlinear curvature elasticity and activity,
we investigated the limiting case of very long correlation time for the active processes relative to the correlation time 𝑡𝓁𝑚 of mode
𝓁. Thus, for 𝜏𝑎 ≫ 𝑡𝓁𝑚, Eq. (76) reduces to

⟨|𝑢𝓁𝑚|
2
⟩ =

𝑘𝐵𝑇
𝜅𝐸̃𝓁

(

1 + 𝜒𝑎
𝑥𝓁
𝐸̃𝓁

)

. (84)

As in the case of quasi-planar active membranes, we can consider two types of active forces — direct force and curvature
force. Consistent with the expressions for active forces provided in Eqs. (38) and (39), we used 𝑥𝓁 = 1 for direct force, and
𝑥𝓁 = (𝓁 + 2)2(𝓁 − 1)2∕4 for curvature force (Loubet et al., 2012). For each type of active force, we present our results with and

ithout surface tension. Since most prior work on active membranes has focused on very large vesicles (𝑟0 ∼ 1000𝑑), we first
compared our results for nonlinear curvature elasticity with the results by Loubet et al. (2012). We found that nonlinear curvature
elasticity has negligible effect on the fluctuations of such large vesicles. We then considered the case of very small vesicles with
𝑟0 = 5𝑑. We chose this extremely small size as a limiting case since (Ahmadpoor and Sharma, 2016) show that nonlinear curvature
elasticity dramatically increases the bending modulus at these vesicle sizes. We then computed the surface tension in the absence
and presence of activity using Eq. (80) and (81) respectively. The values for different cases are reported in the figure caption. Using
the appropriate value of surface tension, we computed the fluctuation spectrum for the different types of active forces. The results
are plotted in Fig. 4 for direct force and Fig. 5 for curvature force.

We make several observations. First, surface tension plays a dominant role in the fluctuations. Specifically, the fluctuations are
dramatically reduced by orders of magnitude for tense membranes when compared to tensionless membranes as seen by comparing
(a) and (b) cases for direct and curvature force results. Furthermore, Figs. 4(a) and 5(a) show that activity substantially increases
the fluctuations in the absence of surface tension. Second, we find a rather unexpected interplay of activity and surface tension. For
the direct force case, when surface tension is considered (Fig. 4(b)), activity increases the fluctuations at lower modes but decreases
the fluctuations at higher modes. In contrast, for the curvature force case, when surface tension is considered (Fig. 5(b)), activity
decreases the fluctuations at lower modes but increases the fluctuations at higher modes. The physical underpinning of this role
14

of activity, especially in small vesicles, is not yet clear to us. In fact, we do not find this interplay for large vesicles in which case
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Fig. 4. Plots for ⟨|𝑢𝓁𝑚|
2
⟩ versus 𝓁 for active vesicles with nonlinear curvature elasticity for the case of direct force (a) with 𝜎̄ = 0 and (b) with surface tension.

We use the following parameters: 𝜅 = 10𝑘𝐵𝑇 , 𝑟0 = 5𝑑, 𝑙𝑚𝑎𝑥 = 𝑟0∕𝑑, 𝑙𝑐 = 3 × 10−9 m, and 𝑑 = 5 × 10−9 m consistent with prior study by Ahmadpoor and Sharma
(2016) for incorporating nonlinear curvature elasticity. For these parameters, we obtain 𝜎̄𝑡ℎ = 25 and 𝜎̄𝑡ℎ𝑛𝑙 = 20 where ‘‘nl’’ denotes the nonlinear elasticity case.
For the active force, we use 𝑥𝓁 = 1 and 𝜒𝑎 = 106 based on a prior study by Loubet et al. (2012). To estimate the surface tension, we use 𝛥∕4𝜋 = 0.003 for the
excess area. For these parameters for active force, we obtain 𝜎̄𝑎 = 1950 and 𝜎̄𝑎𝑛𝑙 = 1945.

Fig. 5. Plots for ⟨|𝑢𝓁𝑚|
2
⟩ versus 𝓁 for active vesicles with nonlinear curvature elasticity for the case of curvature force (a) with 𝜎̄ = 0 and (b) with surface

tension. We use the following parameters: 𝜅 = 10𝑘𝐵𝑇 , 𝑟0 = 5𝑑, 𝑙𝑚𝑎𝑥 = 𝑟0∕𝑑, 𝑙𝑐 = 3 × 10−9 m, and 𝑑 = 5 × 10−9 m consistent with prior study by Ahmadpoor and
Sharma (2016) for incorporating nonlinear curvature elasticity. For these parameters, we obtain 𝜎̄𝑡ℎ = 25 and 𝜎̄𝑡ℎ𝑛𝑙 = 20 where ‘‘nl’’ denotes the nonlinear elasticity
case. For the active force, we use 𝑥𝓁 = (𝓁 + 2)2(𝓁 − 1)2∕4 and 𝜒𝑎 = 40 and to estimate the surface tension, we use 𝛥∕4𝜋 = 0.003 for the excess area. For these
parameters for active force, we obtain 𝜎̄𝑎 = 87 and 𝜎̄𝑎𝑛𝑙 = 80.

activity enhances the fluctuations for lower modes and does not impact higher modes. This is also seen in the results of Loubet
et al. (2012) for large vesicles under direct or curvature force. Third, although nonlinear curvature elasticity tends to decrease the
fluctuations in the presence or absence of activity, it does not seem to have a significant impact on fluctuations even for extremely
small vesicles without surface tension. Thus, based on our numerical results, surface tension, followed by activity are the dominant
players in the fluctuations of active vesicles.

5. Vesicle size distribution of active vesicles

In order to understand the biophysical implications of active forces and fluctuations in vesicles, we revisit the problem
of determining vesicle size distribution (Helfrich, 1986; Kleinert, 1986; Ahmadpoor and Sharma, 2016). Most prior studies in
biophysics literature have modeled the contribution of active forces only in the fluctuations of membranes. These studies provided
unprecedented insights by facilitating comparison with experimental data on fluctuations and elucidating the role of active forces
in enhancing the fluctuations. We seek to go beyond these studies and investigate the role of active fluctuations in a biophysical
15

problem of interest. Specifically, we study vesicle size distribution as an illustrative example.
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We note that the results presented in this section are based on the assumption that the vesicles, even under the influence of
ctive forces, are in thermal equilibrium. The validity of this assumption warrants a deeper theoretical investigation and calibration
hrough experiments. However, since we do not yet have non-equilibrium statistical mechanics tools at our disposal to model active
atter far from equilibrium, we rely on the assumption that active vesicles are close to equilibrium. This assumption permits us to

mploy equilibrium statistical mechanics to estimate the vesicle size distribution from the steady-state fluctuation spectra derived
n the preceding section. In other words, we assume that the fluctuation spectra obtained under the influence of active forces,
re essentially associated with equilibrium thermal fluctuations. Such an assumption has been employed in prior studies. Often,
y assuming that the system is near equilibrium, non-equilibrium effects are considered by way of renormalizing the temperature
which is an equilibrium notion) and assuming the system to be in thermal equilibrium at that renormalized temperature. In fact,
ctive fluctuations are identified in experimental studies in the form of an ‘‘effective temperature’’ (Turlier and Betz, 2018). Here,
nstead of defining an effective temperature, we define an effective free energy (a notion rooted in equilibrium statistical mechanics).

.1. Analytical results

We first present the derivation of the expression for vesicle size distribution based on the fluctuation spectrum of active vesicles
ollowing the works of Helfrich (1986) and Ahmadpoor and Sharma (2016).

Assuming our active vesicle to be in equilibrium, we define a free energy, 𝐹 . According to Helfrich (1986), the vesicle distribution
can then be described by the probability distribution function,

𝑤(𝑁) = 𝐴 exp(−𝐹∕𝑘𝐵𝑇 ) , (85)

where 𝑁 is the number of amphiphilic molecules comprising the vesicle. The proportionality constant 𝐴 is determined by
ormalizing the probability distribution function using the constraint that

∫

∞

0
𝑤(𝑁) 𝑑𝑁 = 1 . (86)

he total free energy for a spherical vesicle with 𝑁 molecules and chemical potential 𝜇 is given by (Helfrich, 1986)

𝐹0 = 𝜇𝑁 + 2𝜋𝜅 , (87)

here the bending energy of a sphere based on linear elasticity is 2𝜋𝜅. According to Ahmadpoor and Sharma (2016), the free energy,
̃ of a fluctuating spherical vesicle can be estimated from the fluctuation spectra as

𝐹 =
𝑘𝐵𝑇
2

∑

𝓁,𝑚
log𝐺𝓁𝑚 , (88)

where 𝐺𝓁𝑚 can be obtained from the relation

⟨|𝑢𝓁𝑚|
2
⟩ ≈

𝑘𝐵𝑇
𝐺𝓁𝑚

. (89)

To take into account the effect of activity and nonlinear curvature elasticity, we compare Eqs. (84) and (89) to get the expression
for 𝐺𝓁𝑚 for the case of an active vesicle as

𝐺𝓁𝑚 = 𝜅
𝐸̃𝓁

1 + 𝑓𝓁
, where 𝑓𝓁 =

𝜒𝑎𝑥𝓁
𝐸̃𝓁

. (90)

To enable comparison with the results of Ahmadpoor and Sharma (2016), we rewrite 𝐸̃𝓁 in terms of the eigenvalues defined in
Eq. (58) as

𝜅𝐸̃𝓁 = 𝜅
[

𝓁2(𝓁 + 1)2 − 2𝓁(𝓁 + 1)
]

(1 + 24
𝑙2𝑐
𝑟20
) + 𝜅𝜎̄𝑒𝑓𝑓 (𝓁 + 2)(𝓁 − 1) = 𝑐1𝑞

4 − 𝑐2𝑞2 + 𝑐3𝑞2 , (91)

here we have defined 𝑞2 = 𝓁(𝓁 + 1) and approximated (𝓁 + 2)(𝓁 − 1) ≈ 𝑞2, so that

𝑐1 = 𝑐2 = 𝜅(1 + 24
𝑙2𝑐
𝑟20
), 𝑐3 = 𝜅𝜎̄𝑒𝑓𝑓 . (92)

Then, following the work of Ahmadpoor and Sharma (2016), we get the total free energy of the fluctuating active vesicle with 𝑁
molecules as

𝐹 = 𝜇𝑁 + 2𝜋
(

𝑐1 −
𝑘𝐵𝑇
4𝜋

𝑐2
𝑐1

log𝑁 +
𝑐3
𝑐1

𝑘𝐵𝑇
4𝜋

log𝑁 −
𝑘𝐵𝑇
4𝜋

𝜅𝜒𝑎
4𝑐1

𝑁
)

, (93)

where we have executed the summations by converting them into integrals as shown below.

∑ 1
2
=

𝓁𝑚𝑎𝑥
∑

𝓁
∑ 1

2
= ∫

𝓁𝑚𝑎𝑥 2𝓁 + 1
𝓁(𝓁 + 1)

𝑑𝓁 = log𝑁 , (94)
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Fig. 6. Plots for probability density for vesicle size distribution as a function of 𝑟0∕𝑑 in for the case of (a) linearized curvature elasticity and (b) nonlinear
urvature elasticity in the presence of activity with strength 𝜒𝑎 ranging from 0 to 0.13. We use the following parameters: 𝜅 = 10𝑘𝐵𝑇 , 𝑙𝑐 = 3 × 10−9 m, and
𝑑 = 5 × 10−9 m.

where we define 𝑞2 = 𝓁(𝓁 + 1) and note that ∑𝑚 = 2𝓁 + 1 since the term inside the summation in Eq. (94) is independent of 𝑚. The
alue of 𝓁𝑚𝑎𝑥 can be determined from the total number of modes or degrees of freedom, 𝑁 as

𝑁 =
∑

𝐪
=
∑

𝓁

𝓁
∑

𝑚=−𝓁
1 =

∑

𝓁

(2𝓁 + 1) =
4𝜋𝑟20
𝐴0

, (95)

where 𝐴0 is the area per amphiphilic molecule and is taken to be about 𝑑2, 𝑑 being the thickness of the membrane. Using
𝓁 = (𝓁 + 2)2(𝓁 − 1)2∕4 for curvature force, the active term is approximated as

∑

𝓁,𝑚
𝜅
𝜒𝑎𝑥𝓁
𝐸̃𝓁

≈
𝜅 𝜒𝑎
4𝑐1

𝑁 . (96)

Substituting Eq. (93) in Eq. (85), we get the probability density in the form

𝑤(𝑁) = 𝐴𝑁𝛼′∕2 exp[−𝑓 (𝑁)] , (97)

where we have used

𝛼′ =
𝑐2
𝑐1

−
𝑐3
𝑐1
, (98)

and

𝑓 (𝑁) = 1
𝑘𝐵𝑇

(𝐴1𝑁 +
𝐴2
𝑁

) . (99)

Here, we have also used the relation 𝑟20 = 𝑁𝐴0∕4𝜋 in the expression for 𝑐1 in Eq. (93) with

𝐴1 = 𝜇 −
𝜅𝜒𝑎
8𝑐1

, 𝐴2 =
172𝜅𝜋2
𝑘𝐵𝑇

𝑙2𝑐
𝑑2

. (100)

5.2. Numerical results

Here, we present numerical results for vesicle size distribution of active vesicles based on Eq. (97). The results for the probability
of finding vesicles of a certain radius are plotted as a function of the normalized radius 𝑟0∕𝑑 in Fig. 6 for varying degrees of strength
with 𝜒𝑎 ranging from 0 to 0.13. For our numerical calculations presented below, we assume 𝜎̄𝑒𝑓𝑓 = 0. The solid line in Figs. 6 (a)
and (b) shows the results from Helfrich’s work based on linear elasticity (Helfrich, 1986). The dashed line in Fig. 6(b) shows the
distribution for passive vesicles including nonlinear curvature elasticity derived based on our expressions of 𝑐1, 𝑐2 and 𝑐3. All other
plots show how the distribution of active vesicles can change depending on the strength of the active forces. Consistent with the
findings of Ahmadpoor and Sharma (2016), we observe that nonlinear curvature elasticity introduces a cut-off radius as shown in
Fig. 6(b) which is realistically expected and supported by experimental evidence (Xu et al., 2013).

The plots shows that the presence of active forces results in a notable shift in the probability density function towards larger
vesicle sizes when compared to corresponding results for passive vesicles with linear (Fig. 6(a)) and nonlinear curvature elasticity
(Fig. 6(b)). This implies that active vesicles can attain size distributions that are different from passive vesicles. In other words, by
tuning the active forces, one can, in principle, go beyond vesicle size distribution predicted solely based on thermal fluctuations
17
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using linearized or nonlinear curvature elasticity. It is indeed a tantalizing speculation that active forces can enable active vesicles
to attain sizes that are deemed improbable for passive vesicles. Nevertheless, we note that a more accurate quantification of the
effect of active forces and the resulting size distribution would require non-equilibrium statistical mechanics approaches since our
numerical results presented in Fig. 6 are based on the assumption that active vesicles are near equilibrium.

The expressions for 𝐴1 and 𝐴2 in Eq. (100) show that the effect of the curvature-mediated force varies as 𝑁 . Repeating the same
alculations for direct force with 𝑥𝓁 = 1 shows that its effect varies as 1∕𝑁 , and hence, does not have much impact on the vesicle
ize distribution. Thus, our results indicate that vesicle size is determined more strongly by forces that induce curvature rather than
irect forces which seems physically reasonable.

We wish to make a comment on the parameters 𝑐1, 𝑐2 and 𝑐3 obtained in our work for nonlinear curvature elasticity. If we take
𝑐 → 0, we recover the results for quadratic energy. However, the coefficients of 𝑙2𝑐∕𝑟

2
0 are different from those reported by Ahmadpoor

nd Sharma (2016), even if the functions are similar. We believe that this difference could stem from how the spherical harmonics are
ncorporated for fluctuating vesicles in the two studies. Ahmadpoor and Sharma (2016) do so by using a variational perturbation
pproximation and a mean field approach to incorporate higher order terms in the potential energy and the resulting statistical
verages. We, on the other hand, have to incorporate spherical harmonics through the membrane force in the dynamic equation
or the membrane and retain only linear order terms in the expansion of the mean curvature 𝐻 in terms of 𝑢 and 𝛥𝑢, which may

introduce some artifacts. A more rigorous approach would entail retaining higher order terms and using a mean field approximation
to include their effect through statistical averages. This will make an interesting future extension of our results.

6. Conclusion

We have presented a theory for active membranes based on principles of continuum mechanics and investigated the statistical
mechanics of active quasi-spherical vesicles. We envision that the general theory developed here will provide a unifying continuum
mechanics framework to understand and build upon seemingly disparate but insightful prior studies on active membranes. We
modeled the non-equilibrium behavior of active membranes by investigating their relaxation dynamics in a dissipative medium
and examined their steady state behavior. We utilized active noise terms to model the impact of active proteins but the theory is
general and can be used with other proposed forms for active forces. We have also presented a discussion on how surface tension
is incorporated in the models for the dynamics of membranes which we hope will provide a context for the different treatments of
surface tension found in the literature.

A specific contribution of our work is that we have extended the continuum model by considering nonlinear curvature elasticity,
thus going beyond the existing studies on active membranes based on the classical Helfrich–Canham energy functional. A key
analytical result of our study is that nonlinear curvature elasticity impacts the statistical mechanics of active membranes through
the bending energy and the surface tension. Comparing tense and tensionless membranes, we reveal that surface tension plays a
more dominant role in reducing the fluctuations in comparison with active forces and constitutive nonlinearity. Although many
theoretical studies on passive membranes ignore surface tension as a parameter that simply accounts for the areal constraint, our
findings indicate that it would be worthwhile to consider surface tension and its interplay with activity for a judicious treatment
of active membranes. A highlight of our study is that we use the fluctuation spectrum of active vesicles to understand their vesicle
size distribution based on a simplifying assumption that the active vesicles are in thermal equilibrium. An interesting implication
of the numerical results is that active vesicles can attain different size distributions which are not possible for passive vesicles.

The continuum mechanics based approach developed here also opens avenues to study the role of active membranes in a host
of biophysics problems such as entropic interactions, interactions with inclusions, role of cytoskeleton, and pore formation. The
framework also provides a systematic way for enriching the theoretical model with additional physics such as electromechanical
coupling. Since we were able to include nonlinear curvature elasticity in our theory by retaining only linear terms in the expansion
of the potential energy in spherical harmonics, a more rigorous study could consider higher order terms through the use of a mean
field approximation. Although the stability of passive membranes has been a subject of interest in the past, understanding the role
of active forces in governing the stability of active membranes presents a fascinating future study.

Finally, a fundamental question in the context of active matter is how far are they from thermodynamic equilibrium. Our work,
and all prior studies for that matter, focus on the steady state behavior of active membranes based on the central assumption that
the active membranes are close to equilibrium. But are they? This is an open question which requires advanced experimental and
theoretical studies rooted in non-equilibrium statistical mechanics.

CRediT authorship contribution statement

Yashashree Kulkarni: Conceptualization, Funding acquisition, Formal Analysis, Investigation, Methodology, Resources, Soft-
are, Validation, Visualization, Writing – original draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
18

o influence the work reported in this paper.



Journal of the Mechanics and Physics of Solids 173 (2023) 105240Y. Kulkarni

A

a

R

A

A

A

A

A
A

B

B
B

B
B

C
C

C

C

C
C

D

D

D
D

E

E

F
F

F

F

G

G

G

G
G

H

H

H

Data availability

No data was used for the research described in the article.

cknowledgments

The author gratefully acknowledges Professors Pradeep Sharma, and Liping Liu for insightful discussions on statistical mechanics
nd the support from the Bill D. Cook Professorship.

eferences

grawal, H., Liu, L., Sharma, P., 2016. Revisiting the curvature-mediated interactions between proteins in biological membranes. Soft Matter 12 (43), 8907–8918.
http://dx.doi.org/10.1039/c6sm01572g.

hmadpoor, F., Sharma, P., 2016. Thermal fluctuations of vesicles and nonlinear curvature elasticity—implications for size-dependent renormalized bending
rigidity and vesicle size distribution. Soft Matter 12 (9), 2523–2536. http://dx.doi.org/10.1039/c5sm02769a.

hmadpoor, F., Sharma, P., 2017. A perspective on the statistical mechanics of 2D materials. Extreme Mech. Lett. 14, 38–43. http://dx.doi.org/10.1016/j.eml.
2016.12.007.

hmadpoor, F., Wang, P., Huang, R., Sharma, P., 2017. Thermal fluctuations and effective bending stiffness of elastic thin sheets and graphene: A nonlinear
analysis. J. Mech. Phys. Solids 107, 294–319. http://dx.doi.org/10.1016/j.jmps.2017.07.011.

rroyo, M., DeSimone, A., 2009. Relaxation dynamics of fluid membranes. Phys. Rev. E 79 (3), 1–3. http://dx.doi.org/10.1103/physreve.79.031915.
rroyo, M., Walani, N., Torres-Sánchez, A., Kaurin, D., 2018. Onsager’s variational principle in soft matter: Introduction and application to the dynamics of

adsorption of proteins onto fluid membranes. In: The Role of Mechanics in the Study of Lipid Bilayers. Springer International Publishing, Cham, pp. 287–332.
iria, A., Maleki, M., Fried, E., 2013. Continuum theory for the edge of an open lipid bilayer. Adv. Appl. Mech. 1–68. http://dx.doi.org/10.1016/b978-0-12-

396522-6.00001-3.
lowers, R., Clarkson, E., Maizels, M., 1951. Flicker phenomenon in human erythrocytes. J. Physiol. 113, 228. http://dx.doi.org/10.1113/jphysiol.1951.sp004568.
owick, M.J., Fakhri, N., Marchetti, M.C., Ramaswamy, S., 2022. Symmetry, thermodynamics, and topology in active matter. Phys. Rev. X 12, 010501.

http://dx.doi.org/10.1103/PhysRevX.12.010501.
rowicz, T., 1890. Further observation of motion phenomena on red blood cells in pathological states. Zbl Med. Wiss. 28, 625–627.
uskermolen, A.B., Suresh, H., Shishvan, S.S., Vigliotti, A., DeSimone, A., Kurniawan, N.A., Bouten, C.V., Deshpande, V.S., 2019. Entropic forces drive cellular

contact guidance. Biophys. J. 116 (10), 1994–2008. http://dx.doi.org/10.1016/j.bpj.2019.04.003.
ai, W., Lubensky, T.C., 1994. Covariant hydrodynamics of fluid membranes. Phys. Rev. Lett. 73 (8), 1186–1189. http://dx.doi.org/10.1103/physrevlett.73.1186.
ai, W., Lubensky, T., 1995. Hydrodynamics and dynamic fluctuations of fluid membranes. Phys. Rev. E 52 (4), 4251–4266. http://dx.doi.org/10.1103/physreve.

52.4251.
anham, P.B., 1970. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theoret. Biol. 26 1,

61–81. http://dx.doi.org/10.1016/S0022-5193(70)80032-7.
arotenuto, A.R., Lunghi, L., Piccolo, V., Babaei, M., Dayal, K., Pugno, N., Zingales, M., Deseri, L., Fraldi, M., 2020. Mechanobiology predicts raft formations

triggered by ligand-receptor activity across the cell membrane. J. Mech. Phys. Solids 141, 103974. http://dx.doi.org/10.1016/j.jmps.2020.103974.
hen, D., Kulkarni, Y., 2013. Elucidating the kinetics of twin boundaries from thermal fluctuations. MRS Commun. 3 (4), 241–244.
hen, D., Kulkarni, Y., 2017. Thermal fluctuations as a computational microscope for studying crystalline interfaces: A mechanistic perspective. J. Appl. Mech.

84 (12).
eseri, L., Pollaci, P., Zingales, M., Dayal, K., 2016. Fractional hereditariness of lipid membranes: Instabilities and linearized evolution. J. Mech. Behav. Biomed.

Mater. 58, 11–27. http://dx.doi.org/10.1016/j.jmbbm.2015.09.021, Special issue: Mechanics of biological membranes.
eserno, M., 2015. Fluid lipid membranes: From differential geometry to curvature stresses. Chem. Phys. Lipids 185, 11–45. http://dx.doi.org/10.1016/j.

chemphyslip.2014.05.001.
oi, M., Edwards, S., 1986. The Theory of Polymer Dynamics. Clarendon Press, Oxford.
ougherty, J.P., 1994. Foundations of non-equilibrium statistical mechanics. Philosoph. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 346 (1680), 259–305.

http://dx.doi.org/10.1098/rsta.1994.0022.
isenstecken, T., Gompper, G., Winkler, R.G., 2016. Conformational properties of active semiflexible polymers. Polymers 8 (8), 304. http://dx.doi.org/10.3390/

polym8080304.
vans, E.A., 1974. Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14 (12), 923–931. http://dx.doi.org/10.1016/S0006-

3495(74)85959-X.
arago, O., Santangelo, C.D., 2005. Pore formation in fluctuating membranes. J. Chem. Phys. 122 (4), 044901. http://dx.doi.org/10.1063/1.1835952.
odor, É., Guo, M., Gov, N.S., Visco, P., Weitz, D.A., van Wijland, F., 2015. Activity-driven fluctuations in living cells. Europhys. Lett. 110 (4), 48005.

http://dx.doi.org/10.1209/0295-5075/110/48005.
ournier, J.-B., Lacoste, D., Raphaël, E., 2004. Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension

at the mesh size. Phys. Rev. Lett. 92 (1), 018102. http://dx.doi.org/10.1103/PhysRevLett.92.018102.
reund, L., 2012. Entropic pressure between biomembranes in a periodic stack due to thermal fluctuations. Proc. Natl. Acad. Sci. 110, 2047–2051. http:

//dx.doi.org/10.1073/pnas.1220968110.
hosh, K., Dixit, P.D., Agozzino, L., Dill, K.A., 2020. The maximum caliber variational principle for nonequilibria. Annu. Rev. Phys. Chem. 71 (1), 213–238.

http://dx.doi.org/10.1146/annurev-physchem-071119-040206.
ivli, S., Giang, H., Bhattacharya, K., 2012. Stability of MultiComponent biological membranes. SIAM J. Appl. Math. 72 (2), 489–511. http://dx.doi.org/10.

1137/110831301.
ompper, G., Kroll, D.M., 1989. Steric interactions in multimembrane systems: A Monte Carlo study. Europhys. Lett. 9 (1), 59–64. http://dx.doi.org/10.1209/0295-

5075/9/1/011.
ov, N., 2004. Membrane undulations driven by force fluctuations of active proteins. Phys. Rev. Lett. 93 (26), http://dx.doi.org/10.1103/physrevlett.93.268104.
ov, N., Safran, S., 2004. Pinning of fluid membranes by periodic harmonic potentials. Phys. Rev. E 69 (1), 011101. http://dx.doi.org/10.1103/PhysRevE.69.

011101.
ankins, H.M., Baldridge, R.D., Xu, P., Graham, T.R., 2015. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution.

Traffic (Copenhagen, Denmark) 16, 35–47. http://dx.doi.org/10.1111/tra.12233.
anlumyuang, Y., Liu, L., Sharma, P., 2014. Revisiting the entropic force between fluctuating biological membranes. J. Mech. Phys. Solids 63, 179–186.

http://dx.doi.org/10.1016/j.jmps.2013.09.011.
appel, J., Brenner, H., 1983. Low Reynolds Number Hydrodynamics. Martinus Nijhoff Publishers, The Hague.
19

http://dx.doi.org/10.1039/c6sm01572g
http://dx.doi.org/10.1039/c5sm02769a
http://dx.doi.org/10.1016/j.eml.2016.12.007
http://dx.doi.org/10.1016/j.eml.2016.12.007
http://dx.doi.org/10.1016/j.eml.2016.12.007
http://dx.doi.org/10.1016/j.jmps.2017.07.011
http://dx.doi.org/10.1103/physreve.79.031915
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb6
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb6
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb6
http://dx.doi.org/10.1016/b978-0-12-396522-6.00001-3
http://dx.doi.org/10.1016/b978-0-12-396522-6.00001-3
http://dx.doi.org/10.1016/b978-0-12-396522-6.00001-3
http://dx.doi.org/10.1113/jphysiol.1951.sp004568
http://dx.doi.org/10.1103/PhysRevX.12.010501
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb10
http://dx.doi.org/10.1016/j.bpj.2019.04.003
http://dx.doi.org/10.1103/physrevlett.73.1186
http://dx.doi.org/10.1103/physreve.52.4251
http://dx.doi.org/10.1103/physreve.52.4251
http://dx.doi.org/10.1103/physreve.52.4251
http://dx.doi.org/10.1016/S0022-5193(70)80032-7
http://dx.doi.org/10.1016/j.jmps.2020.103974
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb16
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb17
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb17
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb17
http://dx.doi.org/10.1016/j.jmbbm.2015.09.021
http://dx.doi.org/10.1016/j.chemphyslip.2014.05.001
http://dx.doi.org/10.1016/j.chemphyslip.2014.05.001
http://dx.doi.org/10.1016/j.chemphyslip.2014.05.001
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb20
http://dx.doi.org/10.1098/rsta.1994.0022
http://dx.doi.org/10.3390/polym8080304
http://dx.doi.org/10.3390/polym8080304
http://dx.doi.org/10.3390/polym8080304
http://dx.doi.org/10.1016/S0006-3495(74)85959-X
http://dx.doi.org/10.1016/S0006-3495(74)85959-X
http://dx.doi.org/10.1016/S0006-3495(74)85959-X
http://dx.doi.org/10.1063/1.1835952
http://dx.doi.org/10.1209/0295-5075/110/48005
http://dx.doi.org/10.1103/PhysRevLett.92.018102
http://dx.doi.org/10.1073/pnas.1220968110
http://dx.doi.org/10.1073/pnas.1220968110
http://dx.doi.org/10.1073/pnas.1220968110
http://dx.doi.org/10.1146/annurev-physchem-071119-040206
http://dx.doi.org/10.1137/110831301
http://dx.doi.org/10.1137/110831301
http://dx.doi.org/10.1137/110831301
http://dx.doi.org/10.1209/0295-5075/9/1/011
http://dx.doi.org/10.1209/0295-5075/9/1/011
http://dx.doi.org/10.1209/0295-5075/9/1/011
http://dx.doi.org/10.1103/physrevlett.93.268104
http://dx.doi.org/10.1103/PhysRevE.69.011101
http://dx.doi.org/10.1103/PhysRevE.69.011101
http://dx.doi.org/10.1103/PhysRevE.69.011101
http://dx.doi.org/10.1111/tra.12233
http://dx.doi.org/10.1016/j.jmps.2013.09.011
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb35


Journal of the Mechanics and Physics of Solids 173 (2023) 105240Y. Kulkarni

H
H
H

H
H

J

J
K
K
L

L
L

L

L

L

L

L
L

L

L

M

M

M

M

N
N

P
P
P
P
R

R

R

R

R
R

S
S

S

S
S
S

S
S
S
S

Helfrich, W., 1973. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforschung C 26, 61–81. http://dx.doi.org/10.1515/znc-1973-11-
1209.

elfrich, W., 1975. Out-of-plane fluctuations of lipid bilayers. Z. Naturforschung C 30 (11–12), 841–842. http://dx.doi.org/10.1515/znc-1975-11-1230.
elfrich, W., 1978. Steric interaction of fluid membranes in multilayer systems. Z. Naturf. a 33 (3), 305–315. http://dx.doi.org/10.1515/zna-1978-0308.
elfrich, W., 1986. Size distributions of vesicles: The role of the effective rigidity of membranes. J. Physique 47 (2), 321–329. http://dx.doi.org/10.1051/jphys:

01986004702032100.
oyt, J., Trautt, Z., Upmanyu, M., 2010. Fluctuations in molecular dynamics simulations. Math. Comput. Simulation 80 (7), 1382–1392.
uang, S., Sun, C., Purohit, P., Reina, C., 2021. Harnessing fluctuation theorems to discover free energy and dissipation potentials from non-equilibrium data.

J. Mech. Phys. Solids 149, 104323. http://dx.doi.org/10.1016/j.jmps.2021.104323.
aneš, J.A., Schmidt, D., Blackwell, R., Seifert, U., Smith, A.-S., 2019. Statistical mechanics of an elastically pinned membrane: equilibrium dynamics and power

spectrum. Biophys. J. 117 (3), 542–552. http://dx.doi.org/10.1016/j.bpj.2019.06.036.
aynes, E.T., 1980. The minimum entropy production principle. Ann. Rev. Phys. Chem. 31 (1), 579–601. http://dx.doi.org/10.1146/annurev.pc.31.100180.003051.
leinert, H., 1986. Size distribution of spherical vesicles. Phys. Lett. A 116 (2), 57–62. http://dx.doi.org/10.1016/0375-9601(86)90238-0.
reyszig, E., 1991. Differential Geometry. Dover, New York.
acoste, D., Bassereau, P., 2014. An update on active membranes. In: Liposomes, Lipid Bilayers and Model Membranes: From Basic Research to Application. CRC

Press/Taylor & Francis Group, pp. 271–287.
amb, H., 1932. Hydrodynamics. Cambridge University Press, Cambridge.
iang, X., Purohit, P.K., 2016. A fluctuating elastic plate and a cell model for lipid membranes. J. Mech. Phys. Solids 90, 29–44. http://dx.doi.org/10.1016/j.

jmps.2016.02.019.
iang, X., Purohit, P.K., 2018. A method to compute elastic and entropic interactions of membrane inclusions. Extreme Mech. Lett. 18, 29–35. http:

//dx.doi.org/10.1016/j.eml.2017.10.003.
iao, X., Purohit, P.K., 2021. Kinetics of self-assembly of inclusions due to lipid membrane thickness interactions. Soft Matter 17 (9), 2539–2556. http:

//dx.doi.org/10.1039/D0SM01752C.
iao, X., Purohit, P.K., Gopinath, A., 2020. Extensions of the worm-like-chain model to tethered active filaments under tension. J. Chem. Phys. 153 (19), 194901.

http://dx.doi.org/10.1063/5.0025200.
in, L.C.-L., Gov, N., Brown, F.L., 2006. Nonequilibrium membrane fluctuations driven by active proteins. J. Chem. Phys. 124 (7), 074903. http://dx.doi.org/

10.1063/1.2166383.
ipowsky, R., 1991. The conformation of membranes. Nature 349, 475. http://dx.doi.org/10.1038/349475a0.
iu, L.P., Sharma, P., 2013. Flexoelectricity and thermal fluctuations of lipid bilayer membranes: Renormalization of flexoelectric, dielectric, and elastic properties.

Phys. Rev. E 87, 032715. http://dx.doi.org/10.1103/PhysRevE.87.032715.
omholt, M.A., 2006. Fluctuation spectrum of quasispherical membranes with force-dipole activity. Phys. Rev. E 73 (6), 061914. http://dx.doi.org/10.1103/

physreve.73.061914.
oubet, B., Seifert, U., Lomholt, M.A., 2012. Effective tension and fluctuations in active membranes. Phys. Rev. E 85 (3), 031913. http://dx.doi.org/10.1103/

physreve.85.031913.
adenci, E., Barut, A., Purohit, P.K., 2020. A peridynamic approach to computation of elastic and entropic interactions of inclusions on a lipid membrane. J.

Mech. Phys. Solids 143, 104046. http://dx.doi.org/10.1016/j.jmps.2020.104046.
anneville, J.-B., Bassereau, P., Lévy, D., Prost, J., 1999. Activity of transmembrane proteins induces magnification of shape fluctuations of lipid membranes.

Phys. Rev. Lett. 82 (21), 4356–4359. http://dx.doi.org/10.1103/physrevlett.82.4356.
iao, L., Lomholt, M.A., Kleis, J., 2002. Dynamics of shape fluctuations of quasi-spherical vesicles revisited. Euro. Phys. J. E 9 (2), 143–160. http://dx.doi.org/

10.1140/epje/i2002-10068-2.
ilner, S.T., Safran, S.A., 1987. Dynamical fluctuations of droplet microemulsions and vesicles. Phys. Rev. A 36 (9), 4371–4379. http://dx.doi.org/10.1103/

physreva.36.4371.
elson, D.R., Piran, T., Weinberg, S., 2004. Statistical Mechanics of Membranes and Surfaces. World Scientific Publishing Co., Singapore.
guyen, T.D., Mao, S., Yeh, Y.-W., Purohit, P.K., McAlpine, M.C., 2013. Nanoscale flexoelectricity. Adv. Mater. 25 (7), 946–974. http://dx.doi.org/10.1002/

adma.201203852.
athria, R., Beale, P., 2011. Statistical Mechanics. Academic Press, Boston.
hillips, R., Kondev, J., Theriot, J., Garcia, H., 1998. Physical Biology of the Cell. Garland Science, Boca Raton, http://dx.doi.org/10.1201/9781134111589.
rigogine, I., 2017. Non-Equilibrium Statistical Mechanics. Dover, New York.
rost, J., Bruinsma, R., 1996. Shape fluctuations of active membranes. Europhys. Lett. 33 (4), 321–326. http://dx.doi.org/10.1209/epl/i1996-00340-1.
amaswamy, S., 2010. The mechanics and statistics of active matter. Ann. Rev. Condens. Matter Phys. 1 (1), 323–345. http://dx.doi.org/10.1146/annurev-

conmatphys-070909-104101.
amaswamy, S., Rao, M., 2001. The physics of active membranes. C. R. L’Acad. Sci. Ser. IV - Phys.-Astrophys. 2 (6), 817–839. http://dx.doi.org/10.1016/s1296-

2147(01)01226-4.
amaswamy, S., Toner, J., Prost, J., 1999. Nonequilibrium noise and instabilities in membranes with active pumps. Pramana 53 (1), 237–242. http:

//dx.doi.org/10.1007/s12043-999-0152-2.
amaswamy, S., Toner, J., Prost, J., 2000. Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes. Phys. Rev. Lett. 84 (15), 3494–3497.

http://dx.doi.org/10.1103/physrevlett.84.3494.
ao, M., Sarasij, R., 2001. Active fusion and fission processes on a fluid membrane. Phys. Rev. Lett. 87, 128101. http://dx.doi.org/10.1103/PhysRevLett.87.128101.
im, J., Purohit, P., Klug, W., 2014. Mechanical collapse of confined fluid membrane vesicles. Biomech. Model. Mechanobiol. 13, 1277. http://dx.doi.org/10.

1007/s10237-014-0572-x.
afran, S., 1994. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Perseus Books, New York.
antangelo, C.D., Farago, O., 2007. Membrane fluctuations around inclusions. J. Comput.-Aided Mater. Des. 14 (1), 103–109. http://dx.doi.org/10.1007/s10820-

007-9081-x.
chneider, M., Jenkins, J., Webb, W., 1984. Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles. J. Physique 45 (9), 1457–1472.

http://dx.doi.org/10.1051/jphys:019840045090145700.
eifert, U., 1995. The concept of effective tension for fluctuating vesicles. Z. Phys. B Condens. Matter 97 (2), 299–309. http://dx.doi.org/10.1007/BF01307480.
eifert, U., 1997. Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1), 13–137. http://dx.doi.org/10.1080/00018739700101488.
eifert, U., 1999. Fluid membranes in hydrodynamic flow fields: Formalism and an application to fluctuating quasispherical vesicles in shear flow. Eur. Phys. J.

B 8 (3), 405–415. http://dx.doi.org/10.1007/s100510050706.
ethna, J., 2006. Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford University Press, New York.
teigmann, D., 2009. A concise derivation of membrane theory from three-dimensional nonlinear elasticity. J. Elast. 97, 97–101.
teigmann, D.J., 2018. The Role of Mechanics in the Study of Lipid Bilayers. Springer International Publishing, Cham.
teigmann, D., Baesu, E., Rudd, R.E., Belak, J., McElfresh, M., 2003. On the variational theory of cell-membrane equilibria. Interfaces Free Bound. 5 (4), 357–366.

http://dx.doi.org/10.4171/IFB/83.
20

http://dx.doi.org/10.1515/znc-1973-11-1209
http://dx.doi.org/10.1515/znc-1973-11-1209
http://dx.doi.org/10.1515/znc-1973-11-1209
http://dx.doi.org/10.1515/znc-1975-11-1230
http://dx.doi.org/10.1515/zna-1978-0308
http://dx.doi.org/10.1051/jphys:01986004702032100
http://dx.doi.org/10.1051/jphys:01986004702032100
http://dx.doi.org/10.1051/jphys:01986004702032100
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb40
http://dx.doi.org/10.1016/j.jmps.2021.104323
http://dx.doi.org/10.1016/j.bpj.2019.06.036
http://dx.doi.org/10.1146/annurev.pc.31.100180.003051
http://dx.doi.org/10.1016/0375-9601(86)90238-0
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb45
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb46
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb46
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb46
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb47
http://dx.doi.org/10.1016/j.jmps.2016.02.019
http://dx.doi.org/10.1016/j.jmps.2016.02.019
http://dx.doi.org/10.1016/j.jmps.2016.02.019
http://dx.doi.org/10.1016/j.eml.2017.10.003
http://dx.doi.org/10.1016/j.eml.2017.10.003
http://dx.doi.org/10.1016/j.eml.2017.10.003
http://dx.doi.org/10.1039/D0SM01752C
http://dx.doi.org/10.1039/D0SM01752C
http://dx.doi.org/10.1039/D0SM01752C
http://dx.doi.org/10.1063/5.0025200
http://dx.doi.org/10.1063/1.2166383
http://dx.doi.org/10.1063/1.2166383
http://dx.doi.org/10.1063/1.2166383
http://dx.doi.org/10.1038/349475a0
http://dx.doi.org/10.1103/PhysRevE.87.032715
http://dx.doi.org/10.1103/physreve.73.061914
http://dx.doi.org/10.1103/physreve.73.061914
http://dx.doi.org/10.1103/physreve.73.061914
http://dx.doi.org/10.1103/physreve.85.031913
http://dx.doi.org/10.1103/physreve.85.031913
http://dx.doi.org/10.1103/physreve.85.031913
http://dx.doi.org/10.1016/j.jmps.2020.104046
http://dx.doi.org/10.1103/physrevlett.82.4356
http://dx.doi.org/10.1140/epje/i2002-10068-2
http://dx.doi.org/10.1140/epje/i2002-10068-2
http://dx.doi.org/10.1140/epje/i2002-10068-2
http://dx.doi.org/10.1103/physreva.36.4371
http://dx.doi.org/10.1103/physreva.36.4371
http://dx.doi.org/10.1103/physreva.36.4371
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb61
http://dx.doi.org/10.1002/adma.201203852
http://dx.doi.org/10.1002/adma.201203852
http://dx.doi.org/10.1002/adma.201203852
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb63
http://dx.doi.org/10.1201/9781134111589
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb65
http://dx.doi.org/10.1209/epl/i1996-00340-1
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1016/s1296-2147(01)01226-4
http://dx.doi.org/10.1016/s1296-2147(01)01226-4
http://dx.doi.org/10.1016/s1296-2147(01)01226-4
http://dx.doi.org/10.1007/s12043-999-0152-2
http://dx.doi.org/10.1007/s12043-999-0152-2
http://dx.doi.org/10.1007/s12043-999-0152-2
http://dx.doi.org/10.1103/physrevlett.84.3494
http://dx.doi.org/10.1103/PhysRevLett.87.128101
http://dx.doi.org/10.1007/s10237-014-0572-x
http://dx.doi.org/10.1007/s10237-014-0572-x
http://dx.doi.org/10.1007/s10237-014-0572-x
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb73
http://dx.doi.org/10.1007/s10820-007-9081-x
http://dx.doi.org/10.1007/s10820-007-9081-x
http://dx.doi.org/10.1007/s10820-007-9081-x
http://dx.doi.org/10.1051/jphys:019840045090145700
http://dx.doi.org/10.1007/BF01307480
http://dx.doi.org/10.1080/00018739700101488
http://dx.doi.org/10.1007/s100510050706
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb79
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb80
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb81
http://dx.doi.org/10.4171/IFB/83


Journal of the Mechanics and Physics of Solids 173 (2023) 105240Y. Kulkarni

T

T
T

T

X

Y

Z

Z

Z

Takatori, S.C., Sahu, A., 2020. Active contact forces drive nonequilibrium fluctuations in membrane vesicles. Phys. Rev. Lett. 124 (15), http://dx.doi.org/10.
1103/physrevlett.124.158102.

orbati, M., Mozaffari, K., Liu, L., Sharma, P., 2022. Coupling of mechanical deformation and electromagnetic fields in biological cells. Rev. Modern Phys. 94,
025003. http://dx.doi.org/10.1103/RevModPhys.94.025003, URL https://link.aps.org/doi/10.1103/RevModPhys.94.025003.

urlier, H., Betz, T., 2018. Fluctuations in active membranes. Phys. Biol. Membranes 1–38. http://dx.doi.org/10.1007/978-3-030-00630-3_21.
urlier, H., Betz, T., 2019. Unveiling the active nature of living-membrane fluctuations and mechanics. Annu. Rev. Condens. Matter Phys. 10 (1), 213–232.

http://dx.doi.org/10.1146/annurev-conmatphys-031218-013757.
urlier, H., Fedosov, D., Audoly, B., Auth, T., Gov, N.S., Sykes, C., Joanny, J.-F., Gompper, G., Betz, T., 2016. Equilibrium physics breakdown reveals the active

nature of red blood cell flickering. Nat. Phys. 12, 513–519. http://dx.doi.org/10.1038/nphys3621.
u, W., Wang, X., Zhong, Z., Song, A., Hao, J., 2013. Influence of counterions on lauric acid vesicles and theoretical consideration of vesicle stability. J. Phys.

Chem. B 117 (1), 242–251. http://dx.doi.org/10.1021/jp306630n.
uan, H., Huang, C., Li, J., Lykotrafitis, G., Zhang, S., 2010. One-particle-thick, solvent-free, coarse-grained model for biological and biomimetic fluid membranes.

Phys. Rev. E 82, 011905. http://dx.doi.org/10.1103/PhysRevE.82.011905.
elisko, M., Ahmadpoor, F., Gao, H., Sharma, P., 2017. Determining the Gaussian modulus and edge properties of 2D materials: From graphene to lipid bilayers.

Phys. Rev. Lett. 119, 068002. http://dx.doi.org/10.1103/PhysRevLett.119.068002.
hong-can, O.-Y., Helfrich, W., 1989. Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy

and applications to spheres and cylinders. Phys. Rev. A 39 (10), 5280–5288. http://dx.doi.org/10.1103/physreva.39.5280.
ubarev, D., 1974. Non-Equilibrium Statistical Thermodynamics. Consultants Bureau.
21

http://dx.doi.org/10.1103/physrevlett.124.158102
http://dx.doi.org/10.1103/physrevlett.124.158102
http://dx.doi.org/10.1103/physrevlett.124.158102
http://dx.doi.org/10.1103/RevModPhys.94.025003
https://link.aps.org/doi/10.1103/RevModPhys.94.025003
http://dx.doi.org/10.1007/978-3-030-00630-3_21
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013757
http://dx.doi.org/10.1038/nphys3621
http://dx.doi.org/10.1021/jp306630n
http://dx.doi.org/10.1103/PhysRevE.82.011905
http://dx.doi.org/10.1103/PhysRevLett.119.068002
http://dx.doi.org/10.1103/physreva.39.5280
http://refhub.elsevier.com/S0022-5096(23)00044-3/sb92

	Fluctuations of active membranes with nonlinear curvature elasticity
	Introduction
	A brief review of continuum mechanics of passive membranes
	Mathematical preliminaries and general framework
	Fluctuations of passive membranes — equilibrium analysis

	A continuum theory for active membranes
	General Framework
	Fluctuations of passive membranes — dynamic analysis
	Fluctuations of active membranes

	Fluctuations of active vesicles with nonlinear curvature elasticity
	General framework
	Passive fluctuations under nonlinear curvature elasticity
	Active fluctuations under nonlinear curvature elasticity
	Surface tension in fluctuating quasi-spherical vesicles
	Computation of fluctuation spectra of active vesicles

	Vesicle size distribution of active vesicles
	Analytical results
	Numerical results

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


