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Homogenization of Surface
Energy and Elasticity for Highly
Rough Surfaces
Surface energy plays a central role in several phenomena pertaining to nearly all aspects of
materials science. This includes phenomena such as self-assembly, catalysis, fracture, void
growth, and microstructural evolution among others. In particular, due to the large surface-
to-volume ratio, the impact of surface energy on the physical response of nanostructures is
nothing short of dramatic. How does the roughness of a surface renormalize the surface
energy and associated quantities such as surface stress and surface elasticity? In this
work, we attempt to address this question by using a multi-scale asymptotic homogenization
approach. In particular, the novelty of our work is that we consider highly rough surfaces,
reminiscent of experimental observations, as opposed to gentle roughness that is often
treated by using a perturbation approach. We find that softening of a rough surface is sig-
nificantly underestimated by conventional approaches. In addition, our approach naturally
permits the consideration of bending resistance of a surface, consistent with the Steigmann–
Ogden theory, in sharp contrast to the surfaces in the Gurtin–Murdoch surface elasticity
theory that do not offer flexural resistance. [DOI: 10.1115/1.4053081]
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1 Introduction
From an atomistic perspective, a surface is essentially a defect as

it disrupts the atomic order in the material. Atoms on a free surface
have different arrangement of neighbors, or coordination number,
than their counterparts in the bulk. Therefore, if we regard a
surface as layer(s) of atoms that differ from atoms in the interior,
it is reasonable to expect that the physical properties associated
with surfaces would be distinct from those of the bulk of the
same material. By virtue of these atomistic underpinnings, surfaces
play a vital role in several phenomena pertaining to nearly all
aspects of material behavior. Furthermore, as the surface-to-volume
ratio becomes significantly large at small scales, the impact of sur-
faces on the physical response of nanostructures is nothing short of
dramatic. With the advent of nanotechnology and the drive toward
miniaturization, surface energy-related effects have gained promi-
nence in recent decades and have been studied in a wide range of
contexts such as catalysis [1–3], sensing and vibrations [4–6], com-
posites [7–10], self-assembly [11], phase transformation [12,13],
fracture [14], nanostructures [15–23], and even fluid mechanics
[24], soft materials [25–27], and biology [28,29].
In continuum mechanics, surface effects are usually modeled fol-

lowing the theoretical framework for surface elasticity pioneered by
Gurtin and Murdoch [30,31,28,9]. The surfaces are regarded as
elastic membrane-like entities with zero thickness attached to the
bulk and endowed with a non-trivial excess energy referred to as
the surface energy (see Ref. [32]). In the case of solids, the
surface energy consists of two primary contributions. The first con-
tribution is akin to capillarity or surface tension in fluids but is
known as surface stress in the context of solids. The second contri-
bution comes from surface elasticity as we need to account for the
energetic cost associated with the elastic response of a solid surface.
Since this area has been very well-studied, we refer to a few recent

articles that provide an excellent literature review [2,23,32–36].
Some studies have also investigated the role of surface energy in
the context of imperfect interfaces by treating them as a thin
elastic membrane [37,38].
The importance of curvature-dependence of surface energy was

first propounded by Steigmann and Ogden [39,40]. They demon-
strated that the theoretical framework of Gurtin–Murdoch is incapa-
ble of modeling equilibrium deformations involving compressive
surface stress fields as it does not account for elastic resistance to
flexure. Naturally then, they argued, the Gurtin–Murdoch theory
cannot be used to simulate local surface features, such as inwrinkling
or roughening, which result from compressive surface stresses.
Steigmann and Ogden proposed a modified framework which
resolved this issue by incorporating curvature-dependent surface
energy. However, due to the complexity of the Steigmann–Ogden
curvature-dependent surface elasticity, there are very few studies
on this topic till date [41–43]. Fried and Todres [41] analyzed wrink-
ling instability of a soft film subjected to the action of van der Waals
force whereas Schiavone and Ru [42] examined the solvability of
Steigmann–Ogden theory applied to plane-strain boundary value
problems. Chhapadia et al. [43] applied the Steigmann–Ogden
theory as well as atomistic simulations to provide a resolution to
the apparent anomalous bending behavior of nanostructures.
The continuum theory of surfaces assumes a smooth, flat surface

attached to the bulk. However, the surfaces of most real materials,
even highly polished ones, exhibit roughness across various length
scales. This raises an intriguing question: what is the impact of
roughness on surface energy and its role in mechanical and other
properties? This question was investigated in a few studies
[44,45,23,46]. In particular, Mohammadi et al. [46] approached
this problem using an elegant homogenization scheme based on
energetics. They considered gently rough surfaces (that is, surfaces
with small amplitude waviness) and, hence, were able to use a per-
turbation method for their homogenization approach. They con-
cluded that even gentle roughness dramatically alters surface
elastic properties, although it has a negligible effect on residual
surface stress. They also observed that even if the bare surface has
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a zero surface elasticity modulus, roughness endows it with a finite
modulus, and more importantly, some moduli may also change sign.
If gentle roughness can drastically renormalize the surface prop-

erties, what is the impact of highly rough surfaces? Addressing this
question is the focus of our study. Using a multi-scale homogeniza-
tion approach inspired by the work of Nevard and Keller [47], we
seek to elucidate the effect of a very rough surface possessing
surface elasticity. The central assumption underlying this method
is that the wavelength of the roughness is small compared with
the roughness amplitude which results in a highly rough surface.
The significance of the multi-scale homogenization is that it
replaces the highly rough surface with an equivalent layer of
finite thickness with effective bulk properties that depend on the
roughness as well as surface energy (see schematic in Fig. 1).
This is in contrast to homogenization based on perturbation
theory which yields an equivalent system consisting of a bulk and
a flat (zero-thickness) surface with effective surface properties. In
other words, the homogenized system furnished by multi-scale
asympototics is a composite with distinct properties in the bulk
and the effective layer. A unique advantage of the method is that
it allows us to invoke the Steigmann–Ogden theory to examine
the renormalized curvature-dependent surface elastic constants for
a highly rough surface. Due to the small wavelength assumption,
this method may not be suitable for modeling weak roughness
where the wavelength is much larger than the roughness amplitude.
Some prior studies on homogenization of rough surfaces have

been particularly crucial for the development of our work. Our pro-
posed model differs from them in the following aspects:

(i) In the framework of Mohammadi et al. [46], the amplitude
of the rough surface is small compared to the wavelength.
Thus, the roughness is gentle and can be treated as a pertur-
bation about an effective flat surface. In our model, the
wavelength of the roughness is very small compared to
the amplitude. Thus, the surface is considered very rough
as its slope is large. Hence, it cannot be treated as a pertur-
bation about a flat surface. Taken together, the two studies
capture the two limits of surface roughness.

(ii) Mohammadi et al. [46] use a perturbation method for
homogenization treating the amplitude as a perturbation
parameter. They obtain a homogenized system consisting
of a flat surface with effective surface stress and effective
surface elasticity. In our work, we employ a multi-scale
homogenization method which replaces the highly rough
surface with an equivalent layer or film of finite thickness
with effective bulk elasticity moduli.

(iii) Since the model proposed by Mohammadi et al. [46] is
based on the Gurtin–Murdoch theory, the effective flat
surface obtained by them does not possess curvature-

dependence of the surface energy. Our model, based on
multi-scale homogenization, furnishes a natural way to
draw connection with the Steigmann–Ogden theory to
provide estimates for curvature-dependent surface energy
constants. This is possible because our homogenized
system replaces the rough surface with an effective layer
of finite thickness which inherently possesses bending rigid-
ity even though we do not consider curvature-dependent
surface energy to begin with.

(iv) Although highly rough surfaces have received little atten-
tion, there a few notable exceptions [48–51]. However,
like Ref. [47], all these studies use the multi-scale homoge-
nization approach to study highly rough interfaces without
considering interfacial energy. In contrast, we specifically
study the homogenization of highly rough surfaces
endowed with surface elasticity.

The outline of the rest of the paper is as follows. Section 2 sets the
general mathematical framework for incorporating surface elasticity
theory and formulates the homogenization problem. Section 3
describes our multiscale homogenization scheme. In Sec. 4, we
derive the effective elastic properties and the effective equations
of equilibrium in the homogenized layer. Section 5 presents our
explicit calculations for the case of a sinusoidal roughness. We spe-
cialize our results to a case of a thin film of finite thickness with a
highly rough surface. The discussion includes a comparison of our
results with those of Nevard and Keller [47] and Mohammadi et al.
[46]. Our results and concluding remarks are summarized in Sec. 6.

2 General Framework and Problem Formulation
2.1 Useful Notations. Let B ⊂ R3 be a regular simply con-

nected domain, n̂ be the unit outward normal on ∂B at a point P,
and I be the identity mapping fromR3 to R3. Then, the surface pro-
jection tensor P from R3 to the tangent surface Γ = {a ∈
R3 : a · n̂ = 0} at point P on ∂B is defined as,

P = I − n̂⊗ n̂ (1)

Let v and T be smooth vector and second-order tensor fields,
respectively. Their projection on a smooth surface with outward
normal n̂ is given by

vs = Pv and Ts = PTP (2)

Let ϕ :B → R be a smooth scalar field and v :B → R3 be a smooth
vector field. Then, using Eq. (1), the surface gradients of these fields
are defined as

∇sϕ = P∇ϕ, and ∇sv = (∇v)P (3)

Fig. 1 Homogenization process of (a) a domain B with a stiffness tensor C and a
rough surface ∂B with a stiffness tensor Cs and residual stress τ0, an amplitude δ
and period ϵ in the x1x2x3 domain, (b) homogenized structure consisting of a
domain B1 with a stiffness tensor C topped by a layer B2 of thickness δ character-
ized by an effective tensor Ceff varying along x3 and subject to body forces
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In addition, the surface divergence of a vector field v and tensor
field T are defined as

divsv = tr(∇sv), and a · divsT = divs(TTa) (4)

where “tr” denotes the trace and a ∈ R3 is an arbitrary constant
vector.

2.2 Surface Elasticity. Consider a linear elastic body occupy-
ing a regular domain B ⊂ R3 and let C :R3×3 → R3×3 be a fourth-
order stiffness tensor. In the absence of body forces, the displace-
ment u :B → R3 satisfies the following equilibrium equation of
linear elasticity,

div(C∇u) = 0 in B (5)

To specify the boundary conditions on the surface, we take recourse
in the linearized surface elasticity theory [30,31]. Treating the
surface as a deformable elastic membrane attached to the bulk
without slipping, the surface stress Ss is given by

Ss = Cs∇u + S0s on ∂B (6)

where S0s = τ0Is is the isotropic residual surface stress tensor and τ0

is its magnitude. Is is called the surface identity tensor which is the
projection of the identity tensor on the surface calculated using Eq.
(2).Cs :R

3×3 → R3×3 is the fourth-order surface stiffness tensor that
can be defined as

Cs(ϵs) = 2μsϵs + λsTr(ϵs)Is, ∀ ϵs ∈ R3×3. (7)

μs and λs are the surface elastic properties analogous to the bulk
Lamé constants. ϵs is the infinitesimal surface strain and is
defined as

ϵs = PϵP =
1
2
[P∇su + (P∇su)T ] (8)

Following Mohammadi et al. [46], we obtain the boundary condi-
tion as

(C∇u)n̂ = divs(Cs∇u + S0s ) on ∂B (9)

It is important to bear in mind that the reference configuration
taken here is the initial configuration. Since the equations are
derived in the reference configuration, S = C∇u is the first Piola–
Kirchhoff bulk stress tensor and Ss defined in Eq. (6) is the first
Piola–Kirchhoff surface stress tensor. In linearized elasticity, the dif-
ferent measures of stress are equivalent in the absence of residual
stresses. However, in the presence of surface stress, which is a resi-
dual stress present even in the reference configuration, the equiva-
lence of the different stress measures—first Piola-Kirchhoff,
second Piola-Kirchhoff, and Cauchy stress tensors—no longer
holds (see [32,52]). The Cauchy surface stress tensor is then given by

σs = [det(Is +∇su)]−1 Ss(Is +∇su)T (10)

2.3 Problem Formulation. As depicted in Fig. 1(a), we con-
sider a linear elastic body that occupies a three-dimensional
domain B = {(x1, x2, x3) : x3 < f (x1, x2)} where f (x1, x2) denotes a
very rough surface in the reference configuration. Thus, f (x1, x2)
varies rapidly with a large amplitude δ, and a small wavelength ɛ,
i.e., δ≫ ɛ. Then, our original boundary value problem is given by
Eqs. (5) and (9):

div(C∇u) = 0 in B,
(C∇u)n̂ = divs(Cs∇u + S0s ) on ∂B

{
(11)

The objective of this work is to use multi-scale homogenization
to reduce the original problem to an equivalent boundary value
problem of the following form and illustrated by Fig. 1(b):

div(C∇u) = 0 in B1,
div(Ceff∇u) + f = 0 in B2

{
(12)

System (12) describes the boundary value problem of a linear
elastic composite body consisting of regions B1 and B2. Region
B2 denotes the upper layer of thickness δ corresponding to the
amplitude of the rough surface, and is governed by the effective
equilibrium equation (12)2 with C eff and f being the effective
elastic moduli and forcing term respectively. B1 corresponds to
the bulk which obeys the original equilibrium equation established
in (5).

3 Multiscale Homogenization Approach
We follow the multiscale homogenization method proposed by

Nevard and Keller [47]. They use it to solve a general boundary
value problem in three-dimensions with a very rough interface
separating two linear elastic bodies. The explicit solution for the
homogenization problem entails solving the boundary value
problem over a periodic cell, also known as the “unit cell
problem.” To solve the unit cell problem in our case, we follow
the notation of Vinh and Tung [48]. They use the multi-scale
homogenization approach of Ref. [47] to derive explicit results
for a two-dimensional elastic domain with a very rough interface.
We also reduce the problem to two dimensions as it not only
makes it amenable to explicit calculations, but it also covers a
variety of practical problems that can be represented by two dimen-
sional domains, such as biological membranes and thin films. To
this end, we consider our domain B to be a half-plane with a very
rough surface defined as ∂B = {(x1, x3) : x3 = f (x1)}. The function
f (x1) has a small period ɛ and oscillates between x3=−(δ/2) and
x3= δ/2 with ɛ/δ≪ 1. We require f (x1) to be periodic in x1 (see
Fig. 2).

3.1 Introduction of Separation of Scales. The central ansatz
underlying multiscale homogenization is that the wavelength ɛ of
the surface roughness is very small compared to other relevant
lengths, specifically the amplitude δ of the surface profile. In

Fig. 2 The surface ∂B in the yx3 domain where y varies from 0 to 1. y1 and y2 are two root of the
equation f(y)= constant in the interval [0, 1]. n denotes the normal.
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other words, as ɛ→ 0, we have a very rough surface as its slope is
very large. This inherent separation of scales is made explicit by
defining y such that y= x1/ɛ [53]. Thus, y is a fast variable and x1
is the macroscopic or slow variable. As illustrated in Fig. 2, let
f (y) = f (εy) be the mathematical function describing the surface
profile in terms of the fast variable y. Thus, f (y) is a periodic func-
tion with period 1 and amplitude δ. We assume that the equation x3
= f (y)= constant has exactly two roots, y1 and y2 in the interval
[0,1]. The outward unit normal to the boundary ∂B = {x3 = f (x1)}
is expressed as

n̂ =
1�����������

1 + ε−2f 2y
√ −ε−1fy

1

[ ]
=

n
‖n‖ (13)

where fy= df/dy and ‖n‖ =
�����������
1 + ε−2f 2y

√
is the magnitude of the

outward normal vector, n.
To make the dependence of f (y) on δ explicit, we define f (y)=

δf0(y). Note that since δ is the amplitude, f0(y) is simply a periodic
function describing the roughness profile. f0(y) is a continuously
differentiable albeit arbitrary functions of y. Now, using the large
amplitude, small wavelength approximation, ɛ/δ≪ 1, the Taylor
expansion of ‖n‖ yields,

‖n‖ = ε−1fy

����������
1 +

ε2

δ2
1

f 20y

√
= ε−1fy +

1
2
ε

fy
−
1
8
ε3

f 3y
+ o

ε5

δ5

( )
(14)

Similarly, using the expression for n̂ in Eq. (1), the projection tensor
is obtained as,

P = I −
n
‖n‖⊗

n
‖n‖ ≃

ε2

f 2y
ε
fy
− ε3

f 3y

ε
fy
− ε3

f 3y
1 − ε2

f 2y

⎡
⎣

⎤
⎦ + o

ε3

δ3

( )
(15)

where we again invoke the ɛ/δ≪ 1 approximation and use the
Taylor expansion.
Our goal is to determine the displacement u(x1, x3, ɛ) for small

values of ɛ. The in-plane component u2 as well as the dependence
on x2 are neglected, since we are working with a two-dimensional
domain. The displacement u satisfies the equilibrium equation
and the boundary condition in Eq. (11). Following [47], we define

U(x1, x3, y, ε) = u(x1, x3, ε) (16)

to make the dependence on the fast variable explicit. Then,

u,1 = U,1 + ε−1U,y and u,3 = U,3 (17)

where ϕ,1= ∂ϕ/∂x1, ϕ,3= ∂ϕ/∂x3, and ϕ,y= ∂ϕ/∂y for a scalar func-
tion ϕ(x1, x3, y). To express the boundary value problem (11) in
terms of U(x1, x3, y, ɛ), we employ the notation used by [48] for
our subsequent calculations. Assuming isotropic linear elastic mate-
rial, the equilibrium equation (11)1 yields a system of equations that
can be written in the following compact form [48,54].

Ahku,kh = 0, h, k = 1, 3 (18)

where u= [u1 u3]
T and the A matrices are as follows:

A11 =
C1111 C1131

C3111 C3131

[ ]
=

λ + 2μ 0

0 μ

[ ]
A13 =

C1113 C1133

C3113 C3133

[ ]
=

0 λ

μ 0

[ ]

A31 =
C1311 C1331

C3311 C3331

[ ]
=

0 μ

λ 0

[ ]
A33 =

C1313 C1333

C3313 C3333

[ ]
=

μ 0

0 λ + 2μ

[ ] (19)

Note that since the Lamé constants, λ and μ, are positive, the A matrices are invertible. In order to express the boundary condition (11)2 in
explicit notation, we first multiply both sides with ‖n‖ to get

(C∇u)n = ‖n‖divs(Cs∇u + S0s ) (20)

In terms of the matrices introduced in Eq. (19), the left-hand side of Eq. (20) becomes,

(Ahku,k)nh = −ε−1fy(A11u,1 + A13u,3) + A31u,1 + A33u,3 (21)

while the right-hand side of Eq. (20) can be expressed in the following compact form,

‖n‖divs(Cs∇u + S0s ) = Bhku,hk + D ju,j + T, h, k = 1, 3 (22)

The expressions for B, D and Tmatrices (keeping only the orders that will contribute to the BVPs up to ɛ2) are given in Appendix A. After
substituting Eqs. (16) and (17) in Eqs. (18), (21), and (22), and some tedious calculations, we can express the equilibrium equation (18) and
the boundary condition (20) in terms of U(x1, x3, y, ɛ) (see Appendix A for details).

3.2 Asympotic Expansion. We now assume that the displacement U(x1, x3, y) can be expressed for small values of the wavelength ɛ
as an asymptotic expansion,

U(x1, x3, y, ε) = u(0)(x1, x3) + εu(1)(x1, x3, y) + ε2u(2)(x1, x3, y) + O(ε2) (23)

Note that u (0)(x1, x3) does not depend on the slow variable y. In fact, it is the macroscopic displacement that is observed at length scales
larger than that of the surface roughness. Since U is periodic in y, it follows that u (1), and u (2) are periodic in y with period 1. We now
substitute the asymptotic expansion of the displacement in the boundary value problem derived after introduction of the separation of
scales (Appendix A) to express the equilibrium equation and boundary condition in terms of u (0), u (1), and u (2).

3.3 Boundary Value Problems for Perturbed Solution. The equilibrium equation and surface equation obtained after incorporating
the asymptotic expansion (23) include terms with different orders of ɛ. Gathering the coefficients of the same power of ɛ yields the fol-
lowing set of boundary value problems.
Order ɛ−1:

[A11u(1),y + A11u
(0)
,1 + A13u

(0)
,3 ],y = 0, x3 < f (y)

fy(−A11u(1),y − A11u
(0)
,1 − A13u

(0)
,3 ) = B(−1)

33 u(0),33 +
fyy
fy

D(−1)
3 u(0),3 +

fyy
fy

T(−1), x3 = f (y)

⎧⎪⎨
⎪⎩ (24)
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Order ɛ0:

[A11u
(0)
,1 + A13u

(0)
,3 + A11u(1),y ],1 + [A31u

(0)
,1 + A33u

(0)
,3 + A31u(1),y ],3 + [A11u(2),y + A11u

(1)
,1 + A13u

(1)
,3 ],y = 0, x3 < f (y)

− fyA11u(2)y − fyA11u
(1)
,1 − fyA13u

(1)
,3 + A31u(1),y + A31u

(0)
,1 + A33u

(0)
,3 = fyB

(−1)
33 u(1),33 + B(0)

13u
(0)
,13 + B(0)

31u
(0)
,31 + B(0)

33u
(0)
,33 + B(0)

13u
(1)
,y3 + B(0)

31u
(1)
,3y

+ B(1)
11
fy
u(1),yy +

fyy
f 2y

(T(0) + D(0)
1 u(0),1 + D(0)

3 u(0),3 + D(0)
1 u(1),y ) +

fyy
fy

D(−1)
3 u(1),3 , x3 = f (y)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(25)

Order ɛ1:

[A11u
(1)
,1 + A13u

(1)
,3 + A11u(2),y ],1 + [A31u

(1)
,1 + A31u(2),y + A33u

(1)
,3 ],3 + [A11u

(2)
,1 + A13u

(2)
,3 ],y = 0, x3 < f (y)

− fyA11u
(2)
,1 − fyA13u

(2)
,3 + A31u(2),y + A31u

(1)
,1 + A33u

(1)
,3 = B(2)

11
f 2y

u(1),yy +
B(1)
11
fy
u(0),11 +

B(1)
13
fy
u(0),13 +

B(1)
31
fy
u(0),31 +

B(1)
33
fy
u(0),33 +

B(1)
11
fy
(u(1),1y + u(1),y1) +

B(1)
13
fy
u(1),y3

+ B(1)
31
fy
u(1),3y +

B(1)
11
fy
u(2),yy + B(0)

13u
(1)
,13 + B(0)

31u
(1)
,31 + B(0)

33u
(1)
,33 + B(0)

13u
(2)
,y3 + B(0)

31u
(2)
,3y + fyB(−1)u(2),33 +

fyy
f 3y
(D(1)

1 u(0),1 + D(1)
3 u(0),3

+D(1)
1 u(1),y + T(1)) + fyy

f 2y
(D(0)

1 u(1),1 + D(0)
3 u(1),3 + D(0)

1 u(2),y ) +
fyy
fy
D(−1)

3 u(2),3 , x3 = f (y)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(26)
Order ɛ2:

A11u
(2)
,11 + A13u

(2)
,31 + A31u

(2)
,13 + A33u

(2)
,33 = 0, x3 < f (y)

A31u
(2)
,1 + A33u

(2)
,3 = B(0)

13u
(2)
,13 + B(0)

31u
(2)
,31 + B(0)

33u
(2)
,33 +

B(1)
11
fy
u(1),11 +

B(1)
13
fy
u(1),13 +

B(1)
31
fy
u(1),31 +

B(1)
33
fy
u(1),33

+ B(1)
11
fy
(u(2),1y + u(2),y1) +

B(1)
13
fy
u(2),y3 +

B(1)
31
fy
u(2),3y +

B(2)
11
f 2y

u(0),11 +
B(2)
13
f 2y

u(0),13 +
B(2)
31
f 2y

u(0),31 +
B(2)
33
f 2y

u(0),33 +
B(2)
11
f 2y

(u(1),1y

+ u(1),y1) +
B(2)
13
f 2y

u(1),y3 +
B(2)
31
f 2y

u(1),3y +
B(2)
11
f 2y

u(2),yy +
B(3)
11
f 3y

u(1),yy +
fyy
f 4y
(D(2)

1 u(0),1 + D(2)
3 u(0),3 + D(2)

1 u(1),y + T(2))

+ fyy
f 3y
(D(1)

1 u(1),1 + D(1)
3 u(1),3 + D(1)

1 u(2),y ) +
fyy
f 2y
(D(0)

1 u(2),1 + D(0)
3 u(2),3 ), x3 = f (y)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

4 Homogenized Equations and Effective Properties
Based on the boundary value problem (25) for the order ɛ0, we

wish to derive homogenized equilibrium equations in terms of
only the macroscopic displacement u (0)(x1, x3). To this end, we
first seek to express the derivatives of u (1) and u (2) that appear in
Eq. (25) in terms of u (0). Based on boundary value problem (24)
for the order ɛ−1, we suggest the following form for u (1) [48],

u(1) = N1u(0) + N11u(0),1 + N13u(0),3 + N133u(0),33 + N0 (28)

where N1, N11, N13, N133, and N0 are 2 × 2 matrices that are func-
tions of x3 and y and are periodic in ywith a period of 1. Substituting
Eq. (28) in (24) and gathering the coefficients of u (0), u(0),1 , u

(0)
,3 , and

u(0),33 and the remaining constants, we get the following systems of
equations:

(A11N1
,y),y = 0, x3 < f (y)

−fyA11N1
,y = 0, x3 = f (y)

{
(29)

(A11N11
,y + A11),y = 0, x3 < f (y)

A11N11
,y + A11 = 0, x3 = f (y)

{
(30)

(A11N13
,y + A13),y = 0, x3 < f (y)

−fy(A11N13
,y + A13) =

fyy
fy
D(−1)

3 , x3 = f (y)

{
(31)

(A11N133
,y ),y = 0, x3 < f (y)

−fyA11N133
,y = fyB

(−1)
33 , x3 = f (y)

{
(32)

(A11N0
,y),y = 0, x3 < f (y)

−fyA11N0
,y =

fyy
fy
T(−1), x3 = f (y)

{
(33)

Solving these equations yields the following expressions for the
derivatives of the N matrices,

N1
,y = 0, x3 ≤ f (y) (34)

N11
,y =

0, x3 < f (y)

−I, x3 = f (y)

{
(35)

N13
,y =

A−1
11 < A−1

11 >−1 <A−1
11A13 > −A−1

11A13, x3 < f (y)

−A−1
11A13 − A−1

11D
(−1)
3

fyy
f 2y

∣∣∣
y1
, y = y1

−A−1
11A13 − A−1

11D
(−1)
3

fyy
f 2y

∣∣∣
y2
, y = y2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(36)

N133
,y =

0, x3 < f (y)

−A−1
11B

(−1)
33 , x3 = f (y)

{
(37)

N0
,y =

0, x3 < f (y)

−A−1
11T

(−1) fyy
f 2y

∣∣∣
y1
, y = y1

−A−1
11T

(0) fyy
f 2y

∣∣∣
y2
, y = y2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(38)

where <ϕ> =
�1
0ϕ dy =

�y1
0 ϕ dy +

�1
y2
ϕ dy = (1 − y2 + y1)ϕ for a

constant scalar function ϕ.
We now integrate the equilibrium equation (25)1 with respect to y

over [0, 1] for a constant x3 [47]. To perform this integration, we
first define y1 and y2 as the roots of the equation x3= h(y) at a
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constant x3 (see Fig. 2).

∫1
0
([A11u

(0)
,1 + A13u

(0)
,3 + A11u(1),y ],1 + [A31u

(0)
,1 + A33u

(0)
,3 + A31u(1),y ],3

+ [A11u(2),y + A11u
(1)
,1 + A13u

(1)
,3 ],y) dy = 0 (39)

For convenience, we define

e1 =
∫1
0
[A11u

(0)
,1 + A13u

(0)
,3 + A11u(1),y ],1 dy

e2 =
∫1
0
[A31u

(0)
,1 + A33u

(0)
,3 + A31u(1),y ],3 dy

e3 =
∫1
0
[A11u(2),y + A11u

(1)
,1 + A13u

(1)
,3 ],y dy

We now note that ‖C‖≫ ‖Cs‖ɛ for typical solids where ɛ is the
wavelength and typically on the order of 10 nm. For instance, the
inequality is valid for copper since it has ‖C‖∼ 1011 Pa while
‖Cs‖∼ 1 N/m. Then, enforcing this inequality and neglecting
lower order terms on the right-hand side of Eq. (25)2, we get,

− fy A11u(2)y + A11u
(1)
,1 + A13u

(1)
,3

( )
+ A31u(1),y + A31u

(0)
,1 + A33u

(0)
,3

= B(0)
13u

(0)
,13 + B(0)

31u
(0)
,31 + B(0)

33u
(0)
,33 + B(0)

13u
(1)
,y3 +

fyy
f 2y

(T(0)

+ D(0)
1 u(0),1 + D(0)

3 u(0),3 ), x3 = f (y) (40)

We can now evaluate e3 using Eq. (40) to get,

e3 =
1

fy(y1)
A31u(1),y

∣∣∣
y1
−

1
fy(y2)

A31u(1),y

∣∣∣
y2
+

1
fy(y1)

−
1

fy(y2)

( )
× [A31u

(0)
,1 + A33u

(0)
,3 − B(0)

13u
(0)
,13 + B(0)

31u
(0)
,31 + B(0)

33u
(0)
,33]

+
fyy
f 3y

∣∣∣
y2
−

fyy
f 3y

∣∣∣
y1

( )
[D(1)

1 u(0),1 + D(1)
3 u(0),3 + T(0)] (41)

By substituting for u(1),y |yi in terms of the expressions (34)–(38) for
the N,y matrices we have,

e3 =
1

fy(y1)
−

1
fy(y2)

( )
[(A33 − A31A−1

11A13)u
(0)
,3

− (A31A−1
11B

(−1)
33 + B(0)

33 )u
(0)
,33 − B(0)

13u
(0)
,13

− B(0)
31u

(0)
,31] +

fyy
f 3y

∣∣∣
y2
−

fyy
f 3y

∣∣∣
y1

( )
[D(0)

1 u(0),1

+ D(0)
3 u(0),3 + T(0)] −

fyy
f 3y

∣∣∣
y1
−

fyy
f 3y

∣∣∣
y2

( )

× [A31A−1
11D

(−1)
3 u(0),3 + A31A−1

11T
(−1)] (42)

We now proceed to evaluate e1 and e2 as follows.

e1 =
∫1
0
[A11u

(0)
,1 +A13u

(0)
,3 +A11(N11

,y u
(0)
,1 +N13

,y u
(0)
,3 +N133

,y u(0),33+N0
,y)],1 dy

= 〈A11+A11N11
,y 〉u(0),11 + 〈A13 +A11N13

,y 〉u(0),31 + 〈A11N133
,y 〉u(0),33

(43)

Using Eqs. (35)–(38), the terms between angular brackets can be eval-
uated as

〈A11+A11N11
,y 〉= 〈A11〉 (44)

〈A13+A11N13
,y 〉= 〈A−1

11 〉−1〈A−1
11A13〉=A13 (45)

〈A11N133
,y 〉=0 (46)

Similarly,

e2=
∫1
0
[A31u

(0)
,1 +A33u

(0)
,3 +A31(N11

,y u
(0)
,1 +N13

,y u
(0)
,13+N133

,y u(0),33+N0
,y)],3 dy

= [〈A31+A31N11
,y 〉u(0),1 ],3+ [〈A33+A31N13

,y 〉u(0),3 ],3

+ [〈A31N133
,y 〉u(0),33],3 (47)

where the terms between angular brackets can be evaluated as

〈A31+A31N11
,y 〉= 〈A31〉 (48)

〈A33+A31N13
,y 〉= 〈A33〉 (49)

〈A31N133
,y 〉=0 (50)

Thus, we get the following equilibrium equation in terms of u (0) which
is valid in the equivalent effective layer:

〈A11〉u(0),11+ [A13− (y′1−y′2)B
(0)
31 ]u

(0)
,31+ [(〈A31〉− (y′1− y′2)B

(0)
13 )u

(0)
,1 ],3

+ [(〈A33〉− (y′1− y′2)[A31A−1
11B

(−1)
33 +B(0)

33 ])u
(0)
,3 ],3

+ (y′′1 −y′′2)[A31A−1
11T

(−1)+T(0)]= (y′′2 − y′′1)[B
(0)
13 +D(0)

1 ]u(0),1

+ [(y′′2 −y′′1)(B
(0)
33 +D(0)

3 )+ (y′2−y′1)(A33

−A31A−1
11A13)]u

(0)
,3 , −

δ

2
< x3<

δ

2
(51)

and where we have used the following identities:

1
fy
(yi)=

dyi
dx3

= y′i and −
fyy
f 3y

(yi)=
d2yi
dx23

= y′′i , i={1, 2} (52)

Introducing the separation of scales and the asymptotic expansion in the
effective boundary value problem stated in Eq. (12), we can write the
boundary value problem statement for u (0) as

A11u
(0)
,11 + A13u

(0)
,31 + A31u

(0)
,13 + A33u

(0)
,33 = 0, x3 < −

δ

2
Aeff

11u
(0)
,11 + Aeff

13u
(0)
,31 + [Aeff

31u
(0)
,1 ],3 + [Aeff

33u
(0)
,3 ],3 +∇ · σ∗ = Deff

1 u(0),1 + Deff
3 u(0),3 , − δ

2 ≤ x3 ≤ δ
2

⎧⎨
⎩ (53)
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Comparing Eqs. (51) and (53)2 and introducing ks= λs+ 2μs, we
obtain the effective (bulk) properties in the equivalent layer (−(δ/2)
≤ x3≤ δ/2),

Aeff
11 =

(λ + 2μ)(1 − y2 + y1) 0

0 μ(1 − y2 + y1)

[ ]

Aeff
13 =

0 λ

μ ks(y′2 − y′1)

[ ]

Aeff
31 =

0 μ(1 − y2 + y1)

λ(1 − y2 + y1) ks(y′2 − y′1)

[ ]

Aeff
33 =

(1 − y2 + y1)μ 2ks(y′2 − y′1)

ks(y′2 − y′1) (1 − y2 + y1)(λ + 2μ)

[ ]
(54)

Deff
1 =

0 0
0 −ks(y′′2 − y′′1)

[ ]
,

Deff
3 =

0 0

−ks(y′′2 − y′′1)
4μ(λ + μ)
λ + 2μ

(y′2 − y′1)

⎡
⎣

⎤
⎦ (55)

∇ · σ∗ = −2τ0(y′′1 − y′′2)
0

[ ]
(56)

There are several observations that emerge from this homogeniza-
tion process. First, the surface roughness seems to endow the body
with finite elastic moduli even when those elastic moduli are zero
in the original material which is rather unexpected. Specifically,
Ceff
3331, C

eff
3133, C

eff
3313, and Ceff

1333 are no longer null but are functions
of the surface roughness as well as the surface elastic properties.
Second, both the surface roughness and the surface elasticity
disrupt the major and minor symmetries of the effective elasticity
tensor. Specifically, since Ceff

3133 ≠ Ceff
1333 and Ceff

1313 ≠ Ceff
3113, it

results in a non-symmetric stress tensor in the effective layer.
This implies that the rough surface with elasticity endows the
body with a body moment in the effective layer which breaks
the symmetry of the stress tensor. Third, we observe that although
the bulk material is homogeneous, some of the components of the
effective elasticity tensor vary along the x3 direction, since y1 and
y2 are functions of x3. This is a direct consequence of averaging
between the two limits of the surface roughness profile. Finally,
the residual stress of the surface τ0 is manifested as a residual
stress σ* in the effective layer after homogenization. In Eq.
(53)2, the two terms on the right-hand side involve first derivatives
of the macroscopic displacement but do not contribute to the
divergence of the stress term. Taken together, they contribute to
a force term in the equilibrium equation in the effective layer.
This is in contrast to the equilibrium equation in the bulk material
(53)1 which does not involve a force term.

5 Numerical Calculations and Discussion
To gain insights into the implications of a highly rough surface

on the mechanical response of materials, especially, nanostructures,
we evaluate our results numerically for the case of uniaxial tensile
deformation of a thin film, albeit with a very rough surface. We also
examine by comparison the effect of high degree of roughness
(based on the present work) versus gentle roughness (based on
the work of Mohammadi et al. [46]). To this end, we start by con-
sidering a sinusoidal profile for the surface roughness.

5.1 Explicit Effective Properties for a Sinusoidal
Roughness. First, we obtain explicit expressions for effective
elastic properties for a rough surface with a sinusoidal roughness
of the form,

f (x1) =
δ

2
cos 2π

x1
ε

( )
(57)

Introducing the slow variable y,

f (y) =
δ

2
cos (2πy) (58)

the two inverses of the function f (y) in the [0,1] interval, for x3=
constant, are

y1 =
1
2π

arccos 2
x3
δ

( )
and y2 =

1
2π

arcsin 2
x3
δ

( )
+
3
4

(59)

Using Eq. (59), the effective matrices Aeff
hk , {h, k}= {1, 3} become,

Aeff
11 =

(λ + 2μ)p(x3) 0

0 μ p(x3)

[ ]
, Aeff

13 =
0 λ

μ ks
δ g(x3)

[ ]

Aeff
31 =

0 μ p(x3)

λ p(x3)
ks
δ g(x3)

[ ]
, Aeff

33 =
μ p(x3) 2 ks

δ g(x3)
ks
δ g(x3) (λ + 2μ) p(x3)

[ ]

(60)

where we have introduced the following for simplification,

p(x3) =
1
π
arccos 2

x3
δ

( )
and g(x3) =

2

π

�������������
1 − 2

x3
δ

( )2√ (61)

5.1 Extending these results to random roughness. The results
for sinusoidal roughness can be extended to a general roughness
by assuming that the roughness is statistically invariant over a
length scale Λ. Then, without loss of generality, f0(x1) can be con-
sidered to be a periodic function with a large enough period Λ
where f(x1)= δf0(x1). Applying Fourier analysis, f0(x1) can be
expressed as a superposition of sinusoidal waves. Furthermore,
for random roughness, we can consider an ensemble of general sur-
faces with specified autocorrelation function and correlation length,
which are statistical properties of the random roughness. We then
assume that for a random roughness, f0(x1) is even and periodic
with the period being larger than the correlation length. Expressing
the profile for a general roughness as a Fourier series and applying
the statistical properties for random surfaces should provide an
avenue for extending the results for the sinusoidal roughness to
the case of random roughness. However, such an analysis, although
possible, is beyond the scope of this work. Moreover, we emphasize
that such an analysis will necessarily have to be numerical and will
be an interesting future study.

5.2 The Effective Young’s Modulus of a Thin Film. We now
consider a thin film of thickness h with a surface roughness profile
given by Eq. (57). We apply our homogenization scheme and then
study the response of the effective thin film under plane strain con-
ditions subjected to uniaxial tensile deformation along the x1 direc-
tion. Knowing that the traction along e3 is zero, gives the following
two equations in the effective layer:

σ13 = 2μp(x3)ε13 +
ks
δ
g(x3)ε33 = 0

σ33 = λp(x3)ε11 + 2
ks
δ
g(x3)ε13 + p(x3)(λ + 2μ)ε33 = 0

(62)

Thus, ɛ13 and ɛ33 can be written in terms of ɛ11 as

ε33 =
λμp(x3)2

J(x3)
ε11 and ε13 =

−λ
ks
δ
p(x3)g(x3)

J(x3)
ε11 (63)
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where we have defined

J(x3) =
2k2s
δ2

g(x3)
2 − μ(λ + 2μ)p(x3)

2 (64)

From equations (63), we get the remaining stress components in
terms of ɛ11 as,

σ11 = (λ + 2μ)p(x3) +
λ2μp(x3)2

J(x3)

[ ]
ε11 and

σ31 = −
λμ

ks
δ
g(x3)p(x3)

J(x3)
ε11 (65)

Therefore, the strain energy density of the effective layer (region B2

in Fig. 1(b)) is

Wlayer =
1
2
Aε211

∫δ/2
−(δ/2)

[(λ + μ)p(x3) +
λ2μp(x3)2

J(x3)

+
λ2μ

k2s
δ2
g(x3)2p(x3)2

J(x3)2
dx3 (66)

Using Taylor series expansion of the integrand, we obtain

Wlayer =
1
2
Aε211

δλ

2
+ δμ −

16π4(12 + π2)δ7λ2μ3(λ + 2μ)2k2s
3(π2δ2μ(λ + 2μ) − 32k2s )

4 +
2048π2(12 + π2)δ5λ2μ2(λ + 2μ)k4s

3(π2δ2μ(λ + 2μ) − 32k2s )
4

[

−
π2δ3λ2μ

π2δ2μ(λ + 2μ) − 32k2s
+

16π2δ3λ2μk2s
(π2δ2μ(λ + 2μ) − 32k2s )

2 −
16384(π2 − 4)δ3λ2μk6s
(π2δ2μ(λ + 2μ) − 32k2s )

4

] (67)

The strain energy density in the bulk (region B1 in Fig. 1(b)) with
thickness h− δ is obtained as,

Wbulk =
1
2
A(h − δ)

4μ(λ + μ)
λ + 2μ

ε211 (68)

Denoting the total strain energy density as W1
total and the effective

Young’s modulus as Eeff
1 , we have,

∂2W1
total

∂ε211
=
∂2(Wbulk +Wlayer)

∂ε211
= AhEeff

1 (69)

Thus, for a thin film with a rough surface, multiscale homogeniza-
tion yields the following effective Young’s modulus,

Eeff
1 = 1−

δ

h

( )
4μ(λ+ μ)
λ+ 2μ

+
δ

h

1

6 π2δ2μ(λ+ 2μ)− 32k2s
( )4

( )

× −32π4 12+ π2
( )

δ6λ2μ3(λ+ 2μ)2k2s
[

+ 4096π2 12+ π2
( )

δ4λ2μ2(λ+ 2μ)k4s

− 98304 π2 − 4
( )

δ2λ2μk6s − 6π2δ2λ2μ π2δ2μ(λ+ 2μ)− 32k2s
( )3

+ 96π2δ2λ2μk2s π2δ2μ(λ+ 2μ)− 32k2s
( )2

+ 3λ π2δ2μ(λ+ 2μ)− 32k2s
( )4

+ 6μ π2δ2μ(λ+ 2μ)− 32k2s
( )4]

(70)

We compare this expression with the results of Mohammadi et al.
[46] for a thin film with sinusoidal roughness under uniaxial
tension. If the effective surface elastic constant obtained by them
has the following expression,

keffs = ks −
2π
ε
δ2

4μ(λ+ μ)
λ+ 2μ

(71)

the strain energy for a thin film of thickness h with a homgenized
flat surface characterized by keffs is given as

W2
total =

1
2
Akeffs ε211 + Aτ0ε+

1
2
Ah

4μ(λ+ μ)
λ+ 2μ

ε211 (72)

where the first two terms arise from the homogenized surface and
the last term is the contribution from the bulk. Then, the effective

Young’s modulus is obtained as

Eeff
2 =

ks
h
+
4μ(λ+ μ)
λ+ 2μ

1−
2π
εh

δ2
[ ]

(73)

We wish to emphasize that the effective Young’s modulus derived
from the work of Ref. [46] (Eq. (73)) depends on the wavelength
whereas in our work (Eq. (70)) it does not. While the wavelength
is a characteristic of the surface profile, the separation of scales in
multiscale homogenization is enforced by assuming ɛ to be very
small compared to the amplitude δ or rather δ/ɛ≫ 1. Although ɛ
does not enter explicitly in our final results, we will work within
the limit that ɛ/δ≪ 1 which corresponds to a very rough surface.
In that sense, our work and that of Mohammadi et al. [46] present
two extreme cases for surfaces with varying degree of roughness.
We now examine Eeff

1 and Eeff
2 numerically to gain more insights.

We consider a thin film of Cu with λ= 91GPa and μ= 43GPa, and
ks= λs+ 2μs=−3.16N/m. We use these material constants for a
(001) Cu surface taken from Ref. [55] and take the wavelength, ɛ,
to be 10 nm to facilitate comparison with numerical calculations
of Ref. [46]. We note that our theoretical model is applicable for
any wavelength as long as the high roughness approximation is
satisfied. Furthermore, although the present numerical example
uses material parameters derived from atomistic simulations using
embedded-atom method (EAM) potentials [55], our model can be
used with material parameters obtained from experiments or com-
puted from more sophisticated methods such as density functional
theory (DFT) for more accurate predictions of surface properties.
Since this work is focused on very rough surfaces with large ampli-
tude while in Ref. [46], the roughness amplitude is smaller than the
wavelength, we plot the Eeff normalized with respect to ECu= 4μ(λ
+ μ)/(λ+ 2μ) as a function of the film thickness h ranging from δ to
10δ.
Figures 3(a) and 3(b) reveal that while in both cases the film has a

softer elastic behavior as the amplitude of the roughness becomes
comparable to the film thickness, a highly rough surface has a
more dramatic impact on the effective Young’s modulus than a
surface with mild roughness. Specifically, the Young’s modulus
of the film is reduced to 30% for high roughness while it only
reduces to 70% for mild or gentle roughness. When the film thick-
ness becomes much larger than the roughness amplitude, the rough
surface has a negligible effect on the Young’s modulus.
In order to understand the contribution of surface energy and

surface roughness on the effective properties of the homogenized
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thin film, we compare the effective Young’s modulus of the thin
film with and without surface energy effects. To this end, we first
derive explicitly the homogenization results of Nevard and Keller
[47] for a very rough surface and use them to obtain an expression
for the Young’s modulus of a thin film with sinusoidal roughness
(Appendix B).
Figures 4(a) and 4(b) show the results for our model and the

model by Mohammadi et al. [46] for roughness with small ampli-
tude (δ= 0.01ɛ) whereas Figs. 4(c) and 4(d ) compare their results

for roughness with large amplitude (δ= 10ɛ). As seen in
Fig. 4(b), the model in [46] predicts that a gentle rough surface
without surface elasticity does not change the Young’s modulus
considerably. This is expected since it is very close to a flat
surface. However, including surface energy effects even with
gentle roughness results in a noticeable softening. Comparing this
to Fig. 4(a), we note that our approach predicts a significant reduc-
tion in the Young’s modulus even when the roughness is very small.
An even more curious outcome is that including surface elasticity

Fig. 3 (a) Eeff
1 /ECu as a function of film thickness for δ=10ϵ (high roughness). (b) Eeff

2 /ECu as a function of film thickness for δ=
0.01ϵ (mild roughness). ɛ=10nm. h varies from δ to 10δ. Here, δ is the amplitude and ɛ is the wavelength of the roughness. Eeff

1
and Eeff

1 are the effective Young’s modulus of a thin film with a rough surface using our method and the method of Mohammadi
et al. [46] respectively while ECu is the Young’s modulus of Cu.

Fig. 4 (a) Eeff
1 /ECu with and without surface effects as a function of the film thickness for gentle roughness (δ= 0.01ɛ). (b)

Eeff
2 /ECu with and without surface effects as a function of the film thickness for gentle roughness (δ=0.01ɛ). (c) Eeff

1 /ECu with
and without surface effects as a function of the film thickness for high roughness (δ=10ɛ). (d ) Eeff

2 /ECu with and without
surface effects as a function of the film thickness for high roughness (δ=10ɛ). Film thickness h varies from δ to 10δ and ɛ=
10nm. Here, δ is the amplitude and ɛ is the wavelength of the roughness. Eeff

1 and Eeff
1 are the effective Young’s modulus of

a thin film with a rough surface using our method and the method of [46] respectively while ECu is the Young’s modulus of Cu.
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results in a slight increase in the Young’s modulus. This is physi-
cally unreasonable since the numerical calculations based on
Ref. [46] study shows that surface effects should cause softening
for Cu. This implies that since the multi-scale homogenization
treats the roughness as an equivalent layer of finite thickness, it
may not be suitable for modeling rough surfaces with very small
amplitudes. In the case of very rough surfaces, Fig. 4(c) based on
our homogenization method reveals that roughness has a dominant
effect, and hence, curves with and without surface energy effects are
identical. Figure 4(d ) shows that the model by Ref. [46] gives phys-
ically unreasonable results for the case of very rough surfaces.
Taken together, Fig. 4 provides clear evidence that the multi-scale
homogenization and conventional homogenization based on pertur-
bation method yield two limiting cases for rough surfaces with large
amplitudes and rough surfaces with very small amplitudes respec-
tively. We wish to note that we do not know the range of validity
of either of these approaches for intermediate values of surface
roughness and hence a direct quantitative comparison of our
results obtained for high roughness with those presented for weak
roughness in prior studies [44,46] is not possible. A theoretical anal-
ysis of the limits of validity of our method for intermediate surface
roughness is beyond the scope of the present study.

5.3 Curvature-dependent Surface Energy. Here, we demon-
strate that the multi-scale homogenization approach furnishes a way
to establish a connection with the Steigmann-Ogden theory for
curvature-dependent surface elasticity [40]. The homogenized
system obtained by way of multi-scale homogenization method
replaces the surface with a roughness of amplitude δ with an equiv-
alent layer of thickness δ with effective bulk properties. This
endows the equivalent layer with a bending stiffness even if we
do not consider curvature-dependent surface energy in our original
model. As shown by Chhapadia et al. [43], the Steigmann-Ogden
surface energy constants can be used to define the thickness of a
surface t as a ratio of the energy contribution due to bending and
stretching, and is given by

t =

���
C1

C0

√
(74)

where C0 and C1 are surface elastic modulus and Steigmann-Ogden
constant, respectively. Interestingly, our method naturally yields
that the thickness of the rough surface is the amplitude δ. Further-
more, according to [43], based on the Gurtin-Murdoch theory, the
renormalized effective elastic modulus in tension can be written
in the following form:

Eeff

E
= 1 +

4C0

hE
(75)

In order to compare our results with (75), we can write (70) as a
function of film thickness h by substituting the elastic moduli for
Cu mentioned earlier, and specifying a value for δ. The equation
has the form:

Eeff

E
(h) = 1 −

α

h
(76)

where α is some numerical constant. Comparing (75) and (B26),
we can obtain an estimate for C0. Then, substituting δ for the

thickness of the surface in (74), we can provide a rough estimate
for C1.
For numerical calculations, we use two values of δ – 1 nm and

10 nm – to compute the estimates for C0 and C0 for rough sur-
faces with small amplitude and large amplitude. For δ= 1 nm,
we get C0 =−9.0571 J/m2 (=−0.5653 eV/Å2) and C1=−1.963 ×
10−17 J (=−122.528 eV). The values are comparable to those
obtained by Chhapadia et al. [43]. For δ= 10 nm, we get C0=
−221.261 J/m2 (=−13.81 eV/Å2) and C1=−2.2169 × 10−14 J (=
−138369.27 eV). The large value for C1 for large amplitude is
expected since a layer of larger thickness would have greater
bending stiffness. However, we do emphasize that these are
rough estimates simply to demonstrate that multi-scale homogeni-
zation provides a simple way to determine curvature-dependent
surface energy constants. For more accurate estimates, one would
need to equate the homogenized thin film to an equivalent thin
film with a flat surface including curvature-dependent surface
energy and would be an interesting future study.

6 Conclusion
In this work, we have extended the multi-scale homogenization

method of Nevard and Keller [47] for highly rough surfaces to
take into account the effect of surface energy. The novelty of the
method is that it replaces the highly rough surface by a layer of
finite thickness with effective bulk elastic properties as opposed
to a flat surface with effective surface properties furnished by con-
ventional perturbation methods. We obtain analytical expressions
for a general highly rough surface and specialize our results for
the case of a thin film with a sinusoidal roughness. Using numerical
calculations, we compare our results with those based on the work
of Mohammadi et al. [46] which treats the rough surface as a per-
turbation about a flat surface. Our study shows that the two
methods provide two limiting cases for surface roughness. Specifi-
cally, homogenization based on perturbation methods are appropri-
ate for gentle roughness with small amplitude but high roughness
with large amplitude necessitates the use of multi-scale homogeni-
zation. We also show that the multi-scale homogenization approach
furnishes a natural way for estimating curvature-dependent surface
energy constants based on the Steigmann–Ogden theory [40].
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Appendix A: Introduction of Separation of Scales
Using the relation between u(x1, x3) and U(x1, x3, y) (Eqs. (16) and (17)), the equilibrium equation (18) becomes,

A11(U,11 + ε−1U,1y + ε−1U,y1 + ε−2U,yy) + A13(U,31 + ε−1U,3y) + A31(U,13 + ε−1U,y3) + A33U,33 = 0, x3 < h(y) (A1)
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The left-hand side and right-hand side of the boundary condition are obtained, respectively, as

(Ahku,k)nh = −ε−2(hyA11U,y) + ε−1( − hyA11U,1 − hyA13U,3 + A31U,y) + A31U,1 + A33U,3 (A2)

‖n‖divsSs = ε2
B(4)
11

h4y
U,yy +

B(3)
11

h3y
(U,1y + U,y1) +

B(2)
11

h2y
U,11 +

B(2)
13

h2y
U,13 +

B(2)
31

h2y
U,31 +

B(3)
13

h3y
U,y3 +

B(3)
31

h3y
U,3y +

B(2)
33

h2y
U,33

[

+
hyy
h4y

D(2)
1 U,1 +

hyy
h5y

D(3)
1 U,y +

hyy
h4y

D(2)
3 U,3 +

hyy
h4y

T(2)

]
+ ε

B(3)
11

h3y
U,yy +

B(2)
11

h2y
(U,1y + U,y1) +

B(1)
11

hy
U,11 +

B(1)
13

hy
U,13

[

+
B(2)
13

h2y
U,y3 +

B(1)
31

hy
U,31 +

B(2)
31

h2y
U,3y +

B(1)
33

hy
U,33 +

hyy
h3y

D(1)
1 U,1 +

hyy
h4y

D(2)
1 U,y +

hyy
h3y

D(1)
3 U,3 +

hyy
h3y

T(1)

]

+ ε0
B(2)
11

h2y
U,yy +

B(1)
11

hy
(U,y1 + U,1y) + B(0)

13U,13 +
B(1)
13

hy
U,y3 + B(0)

31U,31 +
B(1)
31

hy
U,3y + B(0)

33U,33

[

+
hyy
h3y

D(1)
1 U,y +

hyy
h2y

D(0)
1 U,1 +

hyy
h2y

D(0)
3 U,3 +

hyy
h2y

T(0)

]
+ ε−1

B(1)
11

hy
U,yy + B(0)

13U,y3 + B(0)
31U,3y + hyB

(−1)
33 U,33 +

hyy
h2y

D(0)
1 U,y

[

+ ε−1
hyy
hy

D(−1)
3 U,y +

hyy
hy

T(−1)
]
+ o(ε2) (A3)

where hy= dh/dy and hyy= d2h/dy2. The B matrices have the following expressions:

B11 =

−
ϵ3

h3y
(λs + 2μs) −

ϵ4

h4y

3
2
λs + 2μs

( )
+
ε2

h2y
(λs + 2μs)

−
ϵ4

h4y

3
2
λs + μs

( )
+
ε2

h2y
(λs + 2μs) −

ϵ3

h3y

3
2
λs + 2μs

( )
+

ε

hy
(λs + 2μs)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

=
ε4

h4y
B(4)
11 +

ε3

h3y
B(3)
11 +

ε2

h2y
B(2)
11 +

ε

hy
B(1)
11 (A4)

B13 =

(λs + 2μs)
ε2

h2y
− 3

2 (2μs + λs)
ε3

h3y
+ (2μs + λs)

ε

hy

− 3
2 (2μs + λs)

ε3

h3y
+ (2μs + λs)

ε

hy
− 3

2 (2μs + λs)
ε2

h2y
+ (2μs + λs)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

= B(0)
13 +

ε

hy
B(1)
13 +

ε2

h2y
B(2)
13 +

ε3

h3y
B(3)
13 (A5)

B31 =

(λs + 2μs)
ε2

h2y
−
3
2
(2μs + λs)

ε3

h3y
+ (2μs + λs)

ε

hy

− 3
2 λs + 2μs
( ) ε3

h3y
+ (2μs + λs)

ε

hy
−
3
2
(2μs + λs)

ε2

h2y
+ (2μs + λs)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

= B(0)
31 +

ε

hy
B(1)
31 +

ε2

h2y
B(2)
31 +

ε3

h3y
B(3)
31 (A6)

B33 =

(λs + 2μs)
ε

hy
− 3

2 (2μs + λs)
ε2

h2y
+ (2μs + λs)

− 3
2 (2μs + λs)

ε2

h2y
+ (2μs + λs) − 3

2 (2μs + λs)
ε

hy
+ ε−1hy(2μs + λs)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

= ε−1hyB
(−1)∗
33 + B(0)

33 +
ε

hy
B(1)
33 +

ε2

h2y
B(2)
33 (A7)

where

B(1)
11 =

0 0

0 λs + 2μs

[ ]
, B(2)

11 =
0 λs + 2μs

λs + 2μs 0

[ ]

B(3)
11 =

−(λs + 2μs) 0

0 − 3
2 λs + 2μs
( )

[ ]
, B(4)

11 =
0 0

0 λs + 2μs

[ ]
(A8)
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B(0)
13 =

0 0

0 λs + 2μs

[ ]
, B(1)

13 =
0 λs + 2μs

λs + 2μs 0

[ ]

B(2)
13 =

−(λs + 2μs) 0

0 −
3
2
(λs + 2μs)

⎡
⎣

⎤
⎦, B(3)

13 =
0 −

3
2
(λs + 2μs)

−
3
2
(λs + 2μs)

⎡
⎢⎣

⎤
⎥⎦ (A9)

B(0)
31 =

0 0

0 λs + 2μs

[ ]
, B(1)

31 =
0 λs + 2μs

λs + 2μs 0

[ ]

B(2)
31 =

−(λs + 2μs) 0

0 −
3
2
(λs + 2μs)

⎡
⎣

⎤
⎦, B(3)

31 =
0 −

3
2
λs + 2μs

( )

−
3
2
λs + 2μs

( )
⎡
⎢⎢⎣

⎤
⎥⎥⎦ (A10)

B(−1)
33 =

0 0

0 λs + 2μs

[ ]
, B(0)

33 =
0 λs + 2μs

λs + 2μs 0

[ ]

B(1)
33 =

λs + 2μs 0

0 −
3
2
(λs + 2μs)

⎡
⎣

⎤
⎦, B(2)

33 =
0 −

3
2
(λs + 2μs)

−
3
2
(λs + 2μs) 0

⎡
⎢⎣

⎤
⎥⎦ (A11)

The D matrices have the following expressions:

D1 =

−ε2
hyy
h4y

(λs + 2μs) ε3
hyy
h5y

(6λs + 8μs) − 2ε
hyy
h3y

(λs + 2μs)

ε3
hyy
h5y

15
2
λs + 5μs

( )
− 3ε

hyy
h3y

(λs + 2μs) ε2
hyy
h4y

(6λs + 8μs) − 2
hyy
h2y

(λs + 2μs)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

= ε3
hyy
h5y

D(3)
1 + ε2

hyy
h4y

D(2)
1 + ε

hyy
h3y

D(1)
1 +

hyy
h2y

D(0)
1 (A12)

D3 =

−2ε
hyy
h3y

(λs + 2μs) − 9
2 ε

2 hyy
h4y

(λs + 2μs) − (λs + 2μs)
hyy
h2y

ε2
hyy
h4y

(6λs + 8μs) − 2(λs + 2μs)
hyy
h2y

− 9
2 ε

hyy
h3y

(λs + 2μs) − ε−1(λs + 2μs)
hyy
hy

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

= ε2
hyy
h4y

D(2)
3 + ε

hyy
h3y

D(1)
3 +

hyy
h2y

D(0)
3 + ε−1

hyy
hy

D(−1)∗
3 (A13)

where

D(0)
1 =

0 0

0 −2(λs + 2μs)

[ ]
, D(1)

1 =
0 −2(λs + 2μs)

−3(λs + 2μs) 0

[ ]

D(2)
1 =

−3(λs + 2μs) 0

0 (6λs + 8μs)

[ ]
, D(3)

1 =
0 (6λs + 8μs)

15
2 λs + 5μs 0

[ ]
(A14)

D(−1)
3 =

0 0

0 −(λs + 2μs)

[ ]
, D(0)

3 =
0 −(λs + 2μs)

−2(λs + 2μs) 0

[ ]

D(1)
3 =

−2(λs + 2μs) 0

0 9
2 ((λs + 2μs))

[ ]
, D(2)

3 =
0 9

2 (λs + 2μs)

6λs + 8μs 0

[ ]
(A15)

The T vector has the following expression:

T =
3
2 ε

2 hyy
h4y
τ0 − hyy

h2y
τ0

3
2 ε

hyy
h3y
τ0 − ε−1 hyy

hy
τ0

⎡
⎣

⎤
⎦ = ε2

hyy
h4y

T(2) + ε
hyy
h3y

T(1) +
hyy
h2y

T(0) + ε−1
hyy
hy

T(−1)∗ (A16)

where

T(−1) =
0

−τ0

[ ]
, T(0) = −τ0

0

[ ]
, T(1) =

0
3
2 τ

0

[ ]
, T(2) =

3
2 τ

0

0

[ ]
(A17)

Note that the superscript (−1) is used only for notation purposes to differentiate between the orders of ɛ associated with different matrices
and doesn’t refer to the inverse of the matrix.
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Appendix B: Homogenized System in the Absence of Surface Elasticity
The boundary value problems for order ɛ−1 and ɛ0 in the absence of surface elasticity:

Order ɛ−1:

[A11u(1),y + A11u
(0)
,1 + A13u

(0)
,3 ],y = 0, x3 < h(y)

hy(−A11u(1),y − A11u
(0)
,1 − A13u

(0)
,3 ) = 0, x3 = h(y)

{
(B1)

Order ɛ0:

[A11u
(0)
,1 + A13u

(0)
,3 + A11u(1),y ],1 + [A31u

(0)
,1 + A33u

(0)
,3 + A31u(1),y ],3 + [A11u(2),y + A11u

(1)
,1 + A13u

(1)
,3 ],y = 0, x3 < h(y)

−hyA11u(2)y − hyA11u
(1)
,1 − hyA13u

(1)
,3 + A31u(1),y + A31u

(0)
,1 + A33u

(0)
,3 = 0, x3 = h(y)

{
(B2)

Order ɛ1:

[A11u
(1)
,1 + A13u

(1)
,3 + A11u(2),y ],1 + [A31u

(1)
,1 + A31u(2),y + A33u

(1)
,3 ],3 + [A11u

(2)
,1 + A13u

(2)
,3 ],y = 0, x3 < h(y)

−hyA11u
(2)
,1 − hyA13u

(2)
,3 + A31u(2),y + A31u

(1)
,1 + A33u

(1)
,3 = 0, x3 = h(y)

{
(B3)

order ɛ2:

A11u
(2)
,11 + A13u

(2)
,31 + A31u

(2)
,13 + A33u

(2)
,33 = 0, x3 < h(y)

A31u
(2)
,1 + A33u

(2)
,3 = 0, x3 = h(y)

{
(B4)

Based on Eq. (B1), we suggest the following form for u (1):

u(1) = N1u(0) + N11u(0),1 + N13u(0),3 (B5)

Where N1, N11, N13 are 2 × 2 matrices, functions of x3 and y, peri-
odic in y with period 1.
Implementing Eqs. (B5) into (B1) yields:

[A11u(1),y + A11u
(0)
,1 + A13u

(0)
,3 ],y = [A11(N1

,yu
(0) + N11

,y u
(0)
,1 + N13

,y u
(0)
,3

+ N133
,y u(0),33 + N0

,y) + A11u
(0)
,1

+ A13u
(0)
,3 ],y, x3 < h(y) (B6)

hy[−A11(N1
,yu

(0) + N11
,y u

(0)
,1 + N13

,y u
(0)
,3 + N133

,y u(0),33 + N0
,y)

− A11u
(0)
,1 − A13u

(0)
,3 ] = 0, x3 = h(y) (B7)

Gathering the coefficients of u (0), u(0),1 , u
(0)
,3 , and u(0),33 and from the

remaining constants, we get the following systems for N1, N11,
and N13:

[A11N1
,y],y = 0, x3 < h(y)

−hyA11N1
,y = 0, x3 = h(y)

{
(B8)

[A11N11
,y + A11],y = 0, x3 < h(y)

A11N11
,y + A11 = 0, x3 = h(y)

{
(B9)

[A11N13
,y + A13],y = 0, x3 < h(y)

−hy(A11N13
,y + A13) = , x3 = h(y)

{
(B10)

which can be solved to obtain the following expressions for the Ni
,y,

i∈ {1, 11, 13}:

N1
,y = 0, x3 ≤ h(y) (B11)

N11
,y =

0, x3 < h(y)

−I, x3 = h(y)

{
(B12)

N13
,y =

A−1
11 〈A−1

11 〉−1〈A−1
11A13〉 − A−1

11A13, x3 < h(y)

−A−1
11A13, x3 = h(y)

{
(B13)

where 〈·〉 = �1
0 · dy =

�y1
0 · dy + �1

y2
· dy.

We integrate the bulk equation in system (B2) over y from 0 to 1,
and by a process similar to the one presented in Sec. 4, we get the
following equilibrium equation in the effective layer

〈A11〉u(0),11 + A13u
(0)
,31 + [〈A31〉u(0),1 ],3 + [〈A33〉u(0),3 ],3

= (y′2 − y′1)(A33 − A31A−1
11A13)]u

(0)
,3 , −

δ

2
< x3 <

δ

2

(B14)

Comparing it to

Aeff
11u

(0)
,11 + Aeff

13u
(0)
,31 + [Aeff

31u
(0)
,1 ],3 + [Aeff

33u
(0)
,3 ],3 = Deff

3 u(0),3 ,

−
δ

2
< x3 <

δ

2
(B15)

we get the effective properties as

Aeff
11 =

(λ + 2μ)(1 − y2 + y1) 0
0 μ(1 − y2 + y1)

[ ]
, Aeff

13 =
0 λ
μ 0

[ ]
(B16)

Aeff
31 =

0 μ(1 − y2 + y1)
λ(1 − y2 + y1) 0

[ ]
,

Aeff
33 =

(1 − y2 + y1)μ 0
0 (1 − y2 + y1)(λ + 2μ)

[ ] (B17)

Deff
3 =

0 0

0
4μ(λ + μ)
λ + 2μ

(y′2 − y′1)

⎡
⎣

⎤
⎦ (B18)

Then, we calculate the effective Young’s modulus of a thin film
similar to the one presented in Sec. 5.

σ13 = C1311ε11 + C1313ε13 + C1331ε31 + C1333ε33 = 2μf (x3)ε13 = 0

(B19)

σ33 = C3311ε11 + C3313ε13 + C3331ε31 + C3333ε33

= λf (x3)ε11 + f (x3)(λ + 2μ)ε33 = 0 (B20)
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(B19) and (B20) give the following relations between the strain
tensor components:

ε33 =
−λ

(λ + 2μ)
ε11 (B21)

ε13 = 0 (B22)

From Eqs. (B21) and (B22), we get the remaining stress tensor
components in terms of ɛ11:

σ11 = C1111ε11 + C1113ε13 + C1131ε31 + C1133ε33

= (λ + 2μ)f (x3) −
λ2

λ + 2μ

[ ]
ε11 (B23)

σ31 = C3111ε11 + C3113ε13 + C3131ε31 + C3133ε33 = 0 (B24)

Therefore, by Eqs. (B21)–(B24), the strain energy density in the
layer is

Wlayer =
1
2
Aε211

∫δ/2
−(δ/2)

(λ + 2μ)f (x3) −
λ2

λ + 2μ

[ ]
dx3 (B25)

Adding the strain energy density in the bulk and then using Eq.
(69), we get the renormalized Young’s modulus for the thin film
due to surface roughness in the absence of surface elasticity:

Eeff =
4μ(λ + μ)
λ + 2μ

−
λ + 2μ

2
δ

h
(B26)
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