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In this paper, we propose a computational method for coarse graining the atomistic description at finite temperature
using formal asymptotics. The method is based on the ansatz that there exists a separation of scales between the time scale
of the atomic fluctuations and that of the thermodynamic processes, such as thermal expansion. We use the WKB method
to propose an averaging scheme for treating the thermal degrees of freedom and deriving an effective Hamiltonian for
the atomistic system. This energy functional is incorporated into the quasicontinuum framework to achieve a seamless
coarse graining on the spatial scale. Numerical validation is performed by computing the thermal equilibrium properties
of selected materials. The scope of the method based on the use of perturbation theory is discussed, and its capability is
illustrated by way of simulating dislocation nucleation under a nanoindenter.
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1. INTRODUCTION

Advances in the fields of nanoscience and nanotechnology have led to a drive toward understanding material behavior
and complex phenomena spanning multiple temporal and spatial scales. Consequently, the past decade has witnessed
the development of several novel multiscale methods that aim to bridge the atomistic scales and the continuum de-
scription. These models are usually broadly classified as sequential or concurrent approaches. Sequential multiscale
methods, such as E and Engquist (2003), Fish and Schwob (2003), Fish et al. (2007a), and Li et al. (2008), are top-
down approaches in that the microscopic model is used to inform the macroscopic model whenever information from
the fine scale is needed for the constitutive description. On the other hand, concurrent multiscale methods, such as
Broughton et al. (1999), Rudd and Broughton (2005), Belytschko and Xiao (2003), and Fish et al. (2007b), simulta-
neously use different models in different regions of the domain and are distinct from other concurrent methods with
regard to the models employed as well as the pathway of information exchange across the interface or the overlap
region between the models. For comprehensive reviews, we refer the readers to Lu and Kaxiras (2005) and Curtin and
Miller (2003). The focus of this work is on the quasicontinuum method, which is a concurrent multiscale approach
for seamlessly bridging the atomistic and continuum realms.

The aim of this paper is the development of a finite temperature extension of the quasicontinuum (QC) method of
Tadmor et al. (1996a,b). The static theory of the quasicontinuum furnishes a computational framework for seamlessly
bridging the spatial length scales by allowing atomistic resolution in the regions of interest (i.e., in the vicinity of
defects) and sequentially coarse graining the atomistic description in regions where the deformation field is slowly
varying on the scale of the lattice. A number of finite-temperature multiscale methods based on QC have been proposed
in the past within the framework of equilibrium statistical mechanics and thermodynamics [cf, e.g., Dupuy et al.
(2005), Shenoy et al. (1999), Tang et al. (2006), and Wu et al. (2003)]. Recently, extensions to QC have also been
developed for modeling nonequilibrium finite-temperature phenomena Kulkarni et al. (2008); Marian et al. (2010).
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In this paper, we propose an alternative, computationally efficient approach toward coarse graining the atomistic
dynamics using formal asymptotics. The QC extension proposed in this work is based on the fully three-dimensional
version developed by Knap and Ortiz (2001).

The problem of ascertaining the thermodynamic behavior of materials as an averaged effect of the thermal fluctu-
ations involves multiple scales in time. Thus, at nonzero temperatures, the problem of coarse graining is compounded
by the hierarchy of temporal scales in addition to that of the spatial scales ranging from the atomistic to the continuum
realms. We address this issue by first averaging over the thermal degrees of freedom using perturbation theory in
order to obtain an effective thermodynamic potential that takes into account the effect of the thermal vibrations. The
central idea is based on the ansatz that there exists a strict separation of scales between the time scale of the atomic
fluctuations and that of the thermodynamic processes, such as thermal expansion and macroscopic deformation of the
system. This enables us to regard the thermal oscillations of the atoms as perturbations about the slow macroscopic
trajectory. To treat these atomic fluctuations, we use the WKB perturbation method, which is well-suited for asym-
potically approximating the solutions to linear ordinary differential equations (ODE), which exhibit high-frequency
oscillations. As a consequence, the thermodynamic potentials obtained in this work are based on the local quasi-
harmonic approximation, which has been shown by LeSar et al. (1989) to be reasonably accurate to at least half the
melting temperature for moderately strained crystals.

For simplicity, we restrict attention to macroscopic processes that are quasi-static. We also assume the local equi-
librium hypothesis. Under these conditions, the WKB method furnishes the internal energy of the system dependent on
the positions and local temperatures associated with all the atoms. The problem of determining the stable equilibrium
configurations of the system can then be stated as a problem of finding thelocal minima of this effective macroscopic
energy. This structure greatly facilitates implementation, which is reduced to replacing ordinary interatomic potentials
by temperature-dependent ones.

The paper is organized as follows: Section 2 provides an outline of the variational framework and the WKB
method that form the basis of this work. The perturbation theory is then used to average over the thermal oscillations
and derive the expression for the internal energy of the atomistic system. In Section 3, we discuss some properties
and ramifications of using the WKB approximation to derive the effective Hamiltonian of the system. In Section 4,
we invoke the Mie-Gr̈uneisen approximation in order to further reduce the computational cost of computing the
eigenfrequencies. Section 5 develops the finite-temperature framework of the quasicontinuum method using the WKB
formulation. In Section 6, the results for some numerical validation tests are presented. Specifically, we calculate the
thermal expansion for copper using the embedded-atom method potential and compare to experimental data and
classical theory. A simulation of a dislocation punch-in under a nanoindenter is presented as an illustrative example.
We conclude the paper by summarizing the limitations and the capabilities of the proposed method and discussing
possible avenues for future method development in Section 7.

2. GENERAL FRAMEWORK

We consider a system with configuration spaceY ×X. The states(q,u) ∈ Y ×X of the system consist of macroscopic
variablesu and microscopic variablesq. We assume that the time scales of the variables are well separated, as
illustrated in Fig. 1. That is,

τu

τq
≫ 1 (1)

whereτu andτq are the average time periods ofu andq, respectively. For the sake of illustration, we consider a crystal
at finite temperature withN atoms occupying a subsetL of a simpled-dimensional Bravais lattice. Without loss of
generality, we shall consider a monatomic crystal. Denoting the basis vectors by{ai ; i = 1, . . . d}, the reference
coordinates of the atoms are

X(l) =

d∑
i=1

liai, l ∈ Z ⊂ Rd (2)
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u(t)

q(t)

t

FIG. 1: Schematic representation of the microscopic and the macroscopic degrees of freedom

wherel are the lattice coordinates associated with individual atoms,Z is the set of integers, andd is the dimension of
space. We also normalizeu andq with the mass of each atom

q(l) → 1√
m

q(l), u(l) → 1√
m

u(l) (3)

For notational convenience,u or q shall represent arrays of all the atomic displacements, whereasu(l) or q(l)
shall refer to the corresponding displacement of atoml. Let the displacement of each atom be decomposed into two
components

u(l) + q(l) (4)

whereu(l) follows the macroscopic deformation of the crystal, andq(l) is the thermal oscillation of the atom. In this
case,

X ≡ Y ≡ RNd (5)

Our aim is to derive an effective energy of the system,E(u), accounting for the effect of the microscale fluctuations.
To this end, we consider the Hamiltonian of the system

H(p, q,u) =
1

2

∑
l∈L

|p(l)|2 + V (u, q) (6)

wherep(l) is the momentum associated withq(l) in the mass-reduced coordinates andV (u, q) is the potential energy
of the system expressible through the use of empirical interatomic potentials. The inertial term due tou is neglected
sinceu is quasistatic. According to statistical thermodynamics, the internal energy of the system is defined as the
phase average of the Hamiltonian (Weiner, 2002). We shall assume ergodicity to express the internal energy as a time
average

E(u) = lim
T→∞

1

T

∫ T

0

H [p(t), q(t),u(t)] dt (7)

The energy is expressed as a functionE(u) based on theansatzthat the fluctuations satisfy, and hence can be deter-
mined from, their Euler-Lagrange equations

q̈ +
∂V

∂q

(
q,u

)
= 0 (8)

We now wish to obtain a closed-form, albeit approximate, solution forq in terms ofu by the use of perturbation theory.
To this end, we first make the inherent separation of temporal scales explicit by introducing a sequence(uϵ) ∈ X:

uϵ(t) = u(ϵt); ϵ → 0 (9)
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Eϵ(u) =
ϵ

b

∫ b/ϵ

0

H [pϵ(t), qϵ(t),uϵ(t)] dt (10a)

with q̈ϵ +
∂V

∂q

(
qϵ,uϵ

)
= 0 (10b)

where we have replaced the time interval[0, T ] by [0, b/ϵ] with ϵ → 0 for the sake of simplicity. We wish to ascertain
the behavior of the system asϵ → 0. To this end, we first obtain the solution to Eq. (10b) by using perturbation theory,
as described in Section 2.1. Substituting this approximate solution in Eq. (10a) and taking the limitϵ → 0 yields the
pointwise limit that we seek

E(u) = lim
ϵ→0

Eϵ(u) (11)

2.1 WKB Method

The WKB method is a singular perturbation method for obtaining approximate global solutions tolinear differential
equations whose highest derivative is multiplied by a small parameter,ϵ. To reduce Eq. (10b) to such a form, we apply
the following change of variables:

τ = ϵt (12)

Sinceϵ is a small parameter,τ denotes a long time scale with respect tot. This yields

ϵ2
∂2qϵ
∂τ2

(τ) +
∂V

∂q
[qϵ(τ),u(τ)] = 0 (13)

Because the WKB approach can be applied to systems of linear ODEs, it requires linearization of the equations of
motion forq. Hence, we assume in addition thatV possesses sufficient smoothness (i.e.,V ∈ C2) and appeal to the
local quasi-harmonic approximation given by

V (qϵ,u) ≈ V (u) +
1

2

∑
l∈L

qT
ϵ (l)K(u, l) qϵ(l) (14)

whereK(u, l) is thed × d dynamical matrix associated with the atoml. The superscriptT denotes a transpose. The
local quasi-harmonic model has been proposed in the work of LeSar et al. (1989), in which it is shown to be reasonably
accurate to at least half the melting temperature for moderately strained crystals. Substituting Eq. (14) into Eq. (10b)
yields a system of linear differential equations for each atom

ϵ2(l)q′′
ϵ(l) + K(u, l) qϵ(l) = 0 ; ∀ l ∈ L (15)

where′ denotes differentiation with respect toτ. Applying the WKB method as described in Appendix A, we obtain
the desired approximate expression forqϵ(l) and the corresponding velocities

qϵ(l, τ) =
∑
j

1√
ωj(u)

vj(u)

{
Aj sin

[
1

ϵ

∫ τ

ωj(s)ds

]
+Bj cos

[
1

ϵ

∫ τ

ωj(s)ds

]}
(16a)

dqϵ
dτ

(l, τ) =
1

ϵ

∑
j

√
ωj(u)vj(u)

{
Aj cos

[
1

ϵ

∫ τ

ωj(s)ds

]
−Bj sin

[
1

ϵ

∫ τ

ωj(s)ds

]}
(16b)

Ai andBi are constants of integration that can be evaluated from the initial conditions.
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2.2 Effective Temperature-Dependent Energy

We recall the family of energy functionals defined in Eq. (10a) and introduce the change of time variable fromt to
τ = ϵt

Eϵ(u) =
1

b

∫ b

0

H [pϵ(τ), qϵ(τ),u(τ)] dτ (17)

Under the quasi-harmonic approximation, the Hamiltonian in Eq. (6) has the form

H =
1

2

∑
l∈L

|pϵ(l)|2 + V [u(τ)] +
1

2

∑
l∈L

qT
ϵ (l)K(u, l) qϵ(l) (18)

Using the relation
pϵ(l) = q̇ϵ(l) = ϵ q′

ϵ(l), ∀ l ∈ L (19)

and substituting the solutions given in Eqs. (16a) and (16b) in the expression (18) simplifies the Hamiltonian to

H = V (u) +
1

2

∑
l∈L

d∑
i=1

ωi(u, l)D
2
i (l) (20)

with
D2

i (l) = A2
i (l) +B2

i (l) (21)

Finally, using Eq. (20) in expression (17) for the energy, we have

Eϵ(u) =
1

b− a

∫ b

a

[
V (u) +

1

2

∑
l∈L

d∑
i=1

ωi(u, l)D
2
i (l)

]
dτ (22)

We observe thatEϵ(u) is independent ofϵ. This implies that the right hand side of Eq. (22) is indeed the limitE(u),
and we have

Eϵ = E

for everyu ∈ X and forϵ → 0. Furthermore, we emphasize that sinceu is a quasistatic deformation,τ simply
serves as an index for a continuous sequence of states at uniform thermodynamic equilibrium. Interpreted as time,τ

represents an arbitrary slow process on the macroscopic time scale. Hence, we can rewrite the internal energy as

E(u) = V (u) +
1

2

∑
l∈L

d∑
i=1

ωi(u, l)D
2
i (l) (23)

2.2.1 Determination ofDi(l)

In molecular dynamics, the equilibrium temperature is prescribed and maintained through the atomic velocities, based
on the equipartition of energy. We follow the same procedure in order to express the dependence ofE(u) on the local
temperature through theDi(l). To this end, we invoke the local equilibrium hypothesis and introduce the notion of a
local temperature,T (l), associated with each atom. We let the initial configuration of the system be an equilibrium
state at zero temperature.

u(l)|τ=0 = u0(l) (24a)

qϵ(l)|τ=0 = q0(l) (24b)

q̇ϵ(l)|τ=0 = ϵ q′
ϵ(l)|τ=0 = v0(l) (24c)

Substituting Eqs. (24a)–(24c) into Eqs. (16a)–(16b) atτ = 0, theAi(l) andBi(l) are determined as

Bi(l) =
√
ωi(u0, l)

[
vT
i (u0, l) q0(l)

]
, i = 1, . . . d (25a)

Volume 10, Number 1, 2012



18 Kulkarni

Ai(l) =
1√

ωi(u0, l)

[
vT
i (u0, l)v0(l)

]
, i = 1, . . . d (25b)

where we have exploited the orthogonality of the eigenvectorsv(l). Writing v0(l) andq0(l) in the principal coordi-
nates

v0(l) =

d∑
i=1

vi(u0, l)Vi(l), q0(l) =

d∑
i=1

vi(u0, l)Qi(l) (26)

we have

D2
i (l) =

1

ωi(u0, l)
[V 2

i (l) +ω2
i (u0, l)Q

2
i (l)] (27)

Assuming local equilibrium, we appeal again to the equipartition theorem to yield

1

2
[V 2

i (l) +ω2
i (u0, l)Q

2
i (l)] = kBT0(l), i = 1, . . . d (28)

which in turn gives

D2
i (l) = 2

kBT0(l)

ωi(u0, l)
(29)

T0(l) is the initial prescribed temperature. Thus, the internal energy of the system, given in (23), becomes

E(u) = V (u) +
∑
l∈L

kBT0(l)
d∑

i=1

ωi(u, l)

ωi(u0, l)
(30)

An important remark in place here is thatE(u) is the internal energy of a system, which need not be in thermal
equilibrium. In other words, the system may have different temperatures in different regions and should only satisfy
the local thermal equilibrium hypothesis, which enables us to define a local temperature,T (l).

3. ADIABATIC INVARIANCE

In this section, we seek to understand some properties of the effective energy derived in the previous section based on
its structure as given in Eq. (30). We note that the effective Hamiltonian obtained by formal asymptotics without the
local quasi-harmonic approximation (i.e., by using theNd×Nd global stiffness matrix of the system) is

H(u) = V (u) +
1

2

Nd∑
i=1

D2
iωi(u) (31)

This result is identical to the effective potential derived in the work of Bornemann (1998) on the homogenization
in time of singularly perturbed mechanical systems. A model problem used in this study is a conservative dynamical
system, with the displacement having a very fast and a slow component and a constraining potential having a quadratic
form. Unlike our approach, this work uses the method of weak convergence in order to determine a homogenized
potential energy for the limiting mechanical system on the continuum scale. For details of the analysis, we refer the
reader to Bornemann (1998).

We now show that the internal energy given by Eq. (30) describes a system undergoing an adiabatic process,
and hence, the problem of finding the metastable equilibrium configurations of the system can be enunciated as a
minimization problem

inf
u∈X

E(u) (32)

We refer to the work of Bornemann (1998) and present some physical arguments in support of our claim. We first
observe that the internal energy in Eq. (30) is a function of only one state variable, which is the deformation of the
system. Thus, the only two ways of changing the total energy of the system are by either prescribing a different initial
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temperature or by deforming it. This implies that the minimization problem stated in Eq. (32) describes a system
subjected to mechanical deformation under adiabatic conditions. This is in agreement with classical thermodynamics
in that the isentropic processes are modeled by minimizing the internal energy. In the absence of entropy sources or
sinks within the system, adiabatic and isentropic conditions are equivalent.

This is also verified by the following calculations relating the current and the initial temperature distribution
within the system. For any system, the internal energy calculated using the harmonic approximation comprises of the
interatomic potentialV (u), which may be anharmonic, and the energy contained in the thermal oscillations of the
atoms, which is harmonic by assumption. If the system is in local thermal equilibrium,

E(u) = V (u) +
∑
l∈L

d kBT (l) (33)

T (l) being the current local temperature. Comparing Eqs. (33) and (30), we have

d T (l) = T0(l)

d∑
i=1

ωi(u, l)

ωi(u0, l)
(34)

Because the equipartition of energy implies equal distribution of the energy among all modes, we get

T (l) = T0(l)
ωi(u, l)

ωi(u0, l)
, ∀i = 1, . . . , d (35)

It is evident that the temperature of the system changes only when there is a change in the mechanical configuration
of the system. Therefore, Eq. (35) describes the evolution of local temperature during an adiabatic process. This
relation can also be derived rigorously based on the adiabatic invariance of the normal action proved in Bornemann
(1998). For a dynamical system whose effective potential is given by Eq. (31), the normal action is defined as the
energy-frequency ratio

θiϵ =
Ei

ϵ

ωi(u)
(36)

Ei
ϵ is the energy of theith mode. By way of weak convergence, it is shown that

θiϵ ⇀ θi0 = const (37)

This is known as the adiabatic invariance of the normal action. Applying this to our problem, we obtain the local
relation

kBT (l)

ωi(u, l)
= const (38)

which is the same as Eq. (35).

4. MIE-GRÜNEISEN APPROXIMATION

The expression for energy furnished by Eq. (30) requires the computation of frequencies associated with each atom.
In addition, the computation of forces in the associated minimization problem involves derivatives of the frequencies
with respect tou, which can be achieved only by numerical differentiation. We circumvent these requirements by
appealing to the Mie-Grüneisen approximation as shown below.

Claim 1. Consider a system in local thermal equilibrium withωi(u, l) being the phonon frequencies associated
with atoml. Then, under the Mie-Grüneisen approximation applied locally

ωi(u, l)

ωi(u0, l)
= const, i = 1, . . . , d (39)
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Proof. The Mie-Gr̈uneisen approximation states that, for a system in thermal equilibrium, the Grüneisen parameter,
defined as

γ(V ) = −
(
∂ lnωi

∂ lnV

)
T

, i = 1, . . . , Nd (40)

is the same for all modes. The implication of this approximation is that the phonon frequencies are not functions
of the equilibrium temperature explicitly but depend on it through the volume,V . As we noted earlier, the system
under consideration needs only to be in local thermal equilibrium. Hence, we apply the Mie-Grüneisen approximation
locally, the Gr̈uneisen parameter for each atom

γ(l) = −
[
∂ lnωi(u, l)

∂ lnV

]
T

, i = 1, . . . , d (41)

being the same for thed modes of the atom.T represents an array of temperatures of all atoms. Thus, we do not
imposeγ to be the same for all the atoms, although it may be same for atoms experiencing identical environments.
Equation (41) can be simplified to

γ(l) = −
[

V

ωi(u, l)

∂ωi(u, l)

∂u
· ∂u
∂V

]
T

(42)

By defining a new functiong1(u, l), we rewrite Eq. (42) as

∂ωi(u, l)

∂u
= −γ(l)

V

∂V

∂u
ωi(u, l) = g1(u, l)ωi(u, l) (43)

At the initial equilibrium configuration (i.e., whenu = u0)

γ0(l) = − V0

ωi(u0, l)

∂u

∂V

∂ωi(u, l)

∂u

∣∣∣∣
0

(44)

or
∂ωi(u, l)

∂u

∣∣∣∣
0

= g1(u0, l)ωi(u0, l) (45)

Assuming sufficient smoothness of the functiong1(u, l), we compute the higher derivatives of the frequencies as
follows:

∂2ωi(u, l)

∂u2
= g′1(u, l)ωi(u, l) + g1(u, l)ω

′
i(u, l) (46a)

= [g′1(u, l) + g21(u, l)]ωi(u, l) = g2(u, l)ωi(u, l) (46b)

where the prime denotes differentiation with respect tou. Equation (46b) is obtained by substituting Eq. (43) into
Eq. (46a). By similar calculations, we obtain a recursive expression for thenth derivative ofωi(u, l)

∂nωi(u, l)

∂un
= gn(u, l)ωi(u, l) (47)

with
gn(u, l) = g′n−1(u, l) + g1(u, l) gn−1(u, l), n ≥ 2 (48)

At the initial equilibrium configuration,

∂nωi(u, l)

∂un

∣∣∣∣
0

= gn(u0, l)ωi(u0, l), n ≥ 1 (49)
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From Eq. (47), we observe that all derivatives ofωi(u, l) are linear inωi(u, l). Assuming sufficient smoothness of
ωi(u, l), thenth-order Taylor series expansion forωi(u, l) about the initial equilibrium state is

ωi(u, l) = ωi(u0, l)+
∂ωi(u, l)

∂u

∣∣∣∣
0

· [u−u0]+
1

2

∂2ωi(u, l)

∂u2

∣∣∣∣
0

[u−u0]
2+ · · ·+ 1

n!

∂nωi(u, l)

∂un

∣∣∣∣
0

[u−u0]
n (50)

Dividing throughout byωi(0) and using the expressions for the derivatives given in (49),

ωi(u, l)

ωi(u0, l)
= 1 + g1(u0, l)u+

1

2
g2(u0, l)u

2 + · · ·+ 1

n!
gn(u0, l)u

n (51)

Because the right-hand side is independent ofi, Eq. (51) shows that under the Mie-Grüneisen approximation, all
frequencies of an atom change in the same ratio.

Thus, we may write
ωi(u, l)

ωi(u0, l)
=

a

b
, ∀i = 1, . . . , d (52)

wherea/b is some constant. Furthermore, using the algebraic identity

a

b
=

c

d
=

a+ c

b+ d
(53)

we can write
ω2

i (u, l)

ω2
i (u0, l)

=

∑d
i=1 ω

2
i (u, l)∑d

i=1 ω
2
i (u0, l)

=
TrK(u, l)

TrK(u0, l)
(54)

Consequently,
d∑

i=1

ωi(u, l)

ωi(u0, l)
= d

a

b
= d

√
TrK(u, l)

TrK(u0, l)
(55)

Thus, the internal energy attains the following form:

E(u) = V (u) +
∑
l∈L

dkBT0(l)

√
TrK(u, l)

TrK(u0, l)
(56)

We use this expression for the internal energy in our subsequent calculations. An advantage of using Eq. (56) is that
we can derive analytical expressions for the trace of the stiffness matrices and, hence, their derivatives with respect to
u. In addition, the use of traces and its derivatives improves the computational efficiency of the method as it eliminates
the computation of the eigenvalues of the dynamical matrices. The expressions for the energy, forces, local stiffness
matrices, and their derivatives for the EAM potentials are derived in Appendix B.

5. FINITE-TEMPERATURE QUASICONTINUUM METHOD

In this section, we review the formulation of the finite temperature quasicontinuum method on the basis of the results
obtained in the previous sections. One of the merits of this approach is that it possesses the same structure as the zero
temperature QC method, with the distinction that the energy functional to be minimized is not the potential energy but
the effective energy furnished by the WKB method. Specifically, the energy functional is given by

Φ(u) = E(u) + Φext(u) (57)

whereE(u) is the internal energy given by Eq. (56), andΦext(u) is an external potential associated with the applied
loads. Then, the problem of finding the set of minimizers of this energy functional may be stated as

min
u∈X

Φ(u) (58)
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For systems with a very large number of atoms, this minimization problem presents a significant computational cost.
The theory of the quasicontinuum provides a computational scheme for preserving the atomistic resolution in the
regions of interest and treating atoms collectively where deformations are slow varying on the scale of the lattice.

We begin by replacing Eq. (58) by the constrained minimization ofΦ(u) over a suitably chosen subspaceXh of
X. Xh is constructed by selecting a reduced setLh ⊂ L of Nh < N representative atoms or nodes based on the
local variation in the deformation field. Introducing a triangulationTh overLh, the macroscopic displacement, and
the temperature of the remaining atoms are determined by piecewise linear interpolation of the nodal coordinates

uh(l) =
∑

lh∈Lh

φ(l|lh)uh(lh) (59a)

Th(l) =
∑

lh∈Lh

φ(l|lh)Th(lh) (59b)

whereφ(l|lh) is the continuous and piecewise linear shape function associated with the representative atom,lh ∈ Lh,
evaluated at the pointX(l). Its domain is restricted to the simplicesK ∈ Th incident onlh, and it satisfies

φ(l′h|lh) = δ(l′h|lh) (60a)∑
lh∈Lh

φ(l|lh) = 1 (60b)

whereδ is the Diracδ function. Equation (60b) ensures that a constant field is interpolated exactly by the basis
functions. Using Eqs. (59a) and (59b) in the expression forΦ(u), taking variations with respect to the nodal variables
uh(lh), and enforcing stationarity yields the equilibrium equations. We follow the work of Knap and Ortiz (2001)
to further reduce the cost of computing the full lattice sums involved in these expressions by introducing appropriate
cluster summation rules. The final form for the effective equilibrium equations is obtained as

∑
l′h∈Lh

nh(l
′
h)

 ∑
l∈C (l′h)

f(l)φ(l|lh)

 = 0 (61)

whereC (lh) represents a cluster of lattice sites within a sphere of radiusr(lh) centered at the nodelh. The cluster
weightsnh(lh) associated with the nodes,lh ∈ Lh, are computed by requiring that the cluster summation rule be
exact for all basis functions (Knap and Ortiz, 2001). The force at each sitel is evaluated as

f(l) =
∂Φ

∂u(l)
(62a)

=
∂E

∂u(l)
+

∂Φext

∂u(l)
(62b)

with
∂E

∂u(l)
=

∂V

∂u(l)
+

d kB
2

∑
l′∈L

[
T0(l)√

TrK(u0, l)TrK(u, l)

∂

∂u(l)
TrK(u, l′)

]
(63)

wherel′ denotes all the atoms in the neighborhood of atoml with a specified cutoff radius. As described in Section 3,
the solutions to Eq. (58) yield the equilibrium configurations of the crystal under adiabatic conditions. Furthermore,
in the absence of entropy sources within the body, this is equivalent to isentropic conditions. Consequently, if the
entropy of the system remains constant during a process, the temperature of the system must change, because entropy
and temperature are conjugate state variables. Therefore, after determining the new equilibrium state of the crystal by
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solving Eq. (61), the new temperature distribution is obtained by evaluating the relation (35) at the nodes. Using the
Mie–Grüneisen approximation, this relation becomes

Th(lh) = T0(lh)

√
TrK(u, lh)

TrK(u0, lh)
(64)

Finally, the flexibility of the quasicontinuum method is further enhanced by the use of adaptive mesh refinement in
order to tailor the computational mesh to the structure of the deformation field. We again refer the readers to the work
of Knap and Ortiz (2001) for a detailed discussion of the adaption indicator used in the current work.

6. NUMERICAL VALIDATION AND TESTS

In this section, we present our calculations for the thermal expansion of materials and a simulation of dislocation
nucleation and propagation under a nanoindenter. The samples used in our simulations are face-centered cubic (fcc)
crystals with the crystallographic orientation as shown in Fig. 2. It bears emphasis that the choice of materials is
dictated by our choice of empirical interaction potentials for fcc crystals, namely, the Lennard-Jones pair potential
and the EAM potential for Copper developed by Johnson (1988). The proposed method is general enough to be
applied to any crystal structure and interatomic potentials.

6.1 Thermal Expansion

The sample used for these tests is a cube of an fcc crystal consisting of 108 atoms with periodic boundary conditions.
The crystal is assumed to be perfect, and only the first nearest-neighbor interactions are considered. Since the crystal,
subjected to a uniform temperature, undergoes a uniform thermal expansion, we use the change in lattice parameter
as the only mechanical degree of freedom for the whole system. Thus, the energy minimization problem is reduced to

min
a

Φ (65)

wherea is the lattice parameter. The sample is prescribed a uniform temperatureT0 and is equilibrated by solving the
minimization problem (65) using the conjugate gradient method. Because our approach assumes adiabatic conditions,
the temperature of a system must change during the process. The uniform temperature of the system in the deformed
configuration is evaluated as

T = T0

√
TrK(a, b)

TrK(a0, b)
(66)
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FIG. 2: Crystallographic orientation of the test sample used in the simulations
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wherea anda0 denote the current and initial lattice constants, andb denotes an atom in the crystal. This computation
is performed after the system achieves equilibrium at the prescribed temperature, and this value ofT is used in plotting
the thermal expansion versus temperature. Figure 3 shows the thermal expansion of Cu versus temperature based on
the EAM-Johnson potential. The plots compare the results for the WKB approach with experimental data (Niz and
MacNair, 1941) as well as the classical results based on the quasi-harmonic approximation. It is instructive to note
that the results of the WKB approach obtained for adiabatic conditions are identical to the classical results that are
obtained for isothermal conditions. This demonstrates the equivalence of the ensembles in the thermodynamic limit
(Zubarev, 1974), i.e., when the number of particles in the system is very large, the microcanonical and the canonical
ensemble yield the same thermodynamic functions. Moreover, as expected, the results for the WKB method and the
classical results have a linear dependence on temperature and are in good agreement with the experimental results up
to about half the melting point of Cu. This is also in agreement with the results of LeSar et al. (1989).

6.2 Dislocation Nucleation under a Nanoindenter

As a concluding illustrative example, we present the simulation of the microstructural evolution via defect nucleation
and propagation under a nanoindenter. We use this example to demonstrate the capabilities of the proposed method
and open directions for future applications.

6.2.1 Test Problem Definition

The test sample is an fcc nearest-neighbor Lennard-Jones crystal with32 × 32 × 32 unit cells, or a total of 137,313
atoms. The surfaces of the sample are aligned with the cube directions (Fig. 2). The imposed boundary conditions are
prescribed in order to allow stress-free initial thermal expansion of the crystal. The indenter is applied on this relaxed
sample. An initial temperature of0.5Tm is prescribed, and all the surfaces are thermally insulated. The initial mesh is
tailored to have atomistic resolution just under the indenter and an increasingly coarser triangulation away from this
region. Figure 4 shows the triangulation of a cross section through the center of the cube withx = const. The initial
number of nodes is 757, which is a significant reduction from the total number of atoms.

As proposed by Kelchner et al. (1998), the spherical indenter is implemented as an external potential interacting
with atoms on the top surface of the cube. The potential is of the form

Φext(r) = AH(R− r) (R− r)3 (67)
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FIG. 3: Thermal expansion of a perfect crystal of Cu. The results are based on the EAM-Johnson potential.
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C‘ D‘

P
z
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FIG. 4: Geometry of the nanoindentation setup for a spherical indenter and the initial mesh. A′B′C′D′ is the region
shown in the snapshots of the temperature evolution.

whereR is the radius of the indenter,r is the distance between a site and the center of the indenter,A is a force
constant, andH(r) is the step function. In our calculations, the parameters have the following values:

R = 25[σ], A = 2000

[
4ϵ

σ3

]
(68)

whereσ andϵ are the parameters in the Lennard-Jones potential that set the energy and length scales, respectively.

6.2.2 Discussion

Figures 5 and 6 show the snapshots of the temperature profile in the vicinity of the indenter at various indenter
depths during the simulation. The images are of the region A’B’C’D’ of the cross-section under the indenter, shown
schematically in Fig. 4. Figure 7 also shows a comparison of the force versus indenter depth curves obtained at
finite temperature and zero temperature. These results lead to the following qualitative interpretations. Figures 5 and
6 show a significant change in temperature during the simulation. Although the prescribed temperature is0.5Tm,
the temperature at the start of indentation is about0.32Tm because the initial thermal expansion is adiabatic. The
maximum temperature reached whenδ = −1.8 [σ] is about0.58Tm, which is a 80% rise. This may be an implication
of the quasi-harmonic approximation, which is found to give higher estimates for thermal expansion. Consequently, it
should also predict greater change in the local temperatures, which depend on the local deformation through Eq. (61).
Our simulation also confirms that defects are nucleated earlier at finite temperature, which is in qualitative agreement
with the observation of Dupuy et al. (2005) and the experimental study by Schuh et al. (2005). The difference in the
images atδ = −1.4 [σ] andδ = −1.5 [σ] shows that the dislocation nucleation leads to an increase in temperature
under the indenter along the (111) slip plane. On continuing the loading (Fig. 6), the dislocation is observed to move
toward the free surface, while the hot region under the indenter along the slip plane continues to spread. Figure 8 shows
the dislocation structure under a spherical indenter predicted by our method and extracted using the centrosymmetry
parameter (Kelchner et al., 1998). The result is in agreement with defect structures observed in fcc crystals (Hull and
Bacon, 2001). A partial dislocation loop is nucleated under the indenter along the (111) plane. We do not see the
trailing partial as the stacking fault grows in area with further indentation.
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d = -1.5 [s]

d = -1.4 [s]d = -1.1 [s]

d = -0.6 [s]d = -0.1 [s]

FIG. 5: Snapshots showing the temperature profile of a section under the indenter at different indentation depths
during the simulation

7. CONCLUDING REMARKS

In this paper, we have developed a computational method for coarse graining the atomistic dynamics at finite temper-
ature. This is accomplished by way of systematically averaging the thermal vibrations of the atoms using the WKB
perturbation theory. To this end, we assume a strict separation of scales between the time scale of the thermal fluctua-
tions and the macroscopic processes, such as thermal expansion or quasistatic deformation of the system. By treating
the thermal vibrations as perturbations about the macroscopic trajectory, the WKB method yields an effective internal
energy for the atomistic system. The local equilibrium hypothesis yields a local form for the energy functional depen-
dent on the mean position and local temperature of all atoms and also allows for nonuniform temperature through the
system. This approximation scheme is then taken as the basis for developing a finite-temperature extension of the QC
method.

The main advantage of this multiscale approach is that it allows for a seamless bridging of the atomistic and
continuum realms at finite temperature, with atomistic resolution only in the region of interest. Because the thermal
degrees of freedom are accounted for in the energy functional, the method is not limited by the time scale of the atomic
oscillations, which is one of the severe limitations of other molecular dynamics-based methods. In the spirit of the QC
theory, the method requires only an interatomic potential as the sole empirical input and is capable of capturing the
microstructural evolution and the associated thermomechanical behavior, albeit under adiabatic conditions. Moreover,
the Mie-Gr̈uneisen approximation simplifies the numerical implementation of the method and further reduces the
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d = -1.8 [s]

d = -1.7 [s]

d = -1.6 [s]

FIG. 6: Snapshots at subsequent load increments showing the temperature profile under the indenter after a dislocation
has nucleated
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FIG. 7: Force vs. indenter depth plot for the simulation of a spherical indenter on a LJ fcc crystal using the WKB
method.
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z
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FIG. 8: Dislocation structure under a spherical indenter. The image shows the energetic atoms under the top surface
of the crystal.

computational cost of evaluating the eigenfrequencies of the system. However, one of the limitations of this approach
is that it relies on the local quasi-harmonic approximation and is restricted to temperatures only up to half the melting
temperature of materials. Nevertheless, it is worth noting that the numerical results for thermal expansion based on
the WKB approach are in excellent agreement with the classical results based on the quasi-harmonic approximation.
Another important aspect of this method is that it is suitable only for locally adiabatic conditions and hence does not
support heat transport through the system. Finally, following the work of Bornemann (1998), we note that a possible
avenue for future work is the development of a dynamic version of the finite temperature QC method. This would be
based on the effective Hamiltonian for the macroscopic dynamic system furnished by the WKB method or by weak
convergence as shown in Bornemann (1998).
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APPENDIX A: WKB APPROXIMATION

The WKB method is a perturbation technique for obtaining approximate global solutions to linear differential equa-
tions whose highest derivative is multiplied by a small parameterϵ. The WKB approximation for such singularly
perturbed problems is illustrated using the following example from Bender and Orszag (1978). Consider the ODE

ϵ2ÿ(t) +ω2(t)y(t) = 0 (A1)
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We wish to ascertain the asymptotic behavior of the solutions in the limit ofϵ → 0. The formal WKB expansion is

y(t) ∼ exp

[
ϵ−1

∞∑
n=0

ϵnSn(t)

]
(A2)

The first and the second derivatives ofy(t) are

ẏ(t) ∼ ϵ−1

[ ∞∑
n=0

ϵnṠn(t)

]
exp

[
ϵ−1

∞∑
n=0

ϵnSn(t)

]
(A3a)

ÿ(t) ∼

ϵ−1
∞∑

n=0

ϵnS̈n(t) + ϵ−2

[ ∞∑
n=0

ϵnṠn(t)

]2
 exp

[
ϵ−1

∞∑
n=0

ϵnSn(t)

]
(A3b)

Substituting these into Eq. (A1) and gathering terms of order 1 andϵ, we obtain

Ṡ2
0 +ω2(t) = 0 ⇒ S0 = ±

∫ t

0

iω(s)ds (A4a)

S̈0 + 2Ṡ0Ṡ1 = 0 ⇒ S1 = −1

4
ln{iω2(t)} (A4b)

Therefore, the first-order WKB approximation is

y(t) ∼ eϵ
−1S0+S1 ∼ ω−1/2(t)

{
A cos

[
ϵ−1

∫ t

0

ω(s) ds

]
+B sin

[
ϵ−1

∫ t

0

ω(s) ds

]}
(A5)

APPENDIX B: CALCULATIONS FOR THE EAM POTENTIAL

The analytical expressions for the interaction potentials, the energy of the crystal, the force on each atom, the dy-
namical matrix of each atom, and the derivative of its trace are presented here. The potential energy based on the
embedded-atom method is given as

V =

N∑
a=1

[
F (ρa) +

1

2

∑
b

ϕ(rab)

]
(B1)

where
ρa =

∑
b

f(rab) (B2)

is the electron density associated with atoma, F is the embedding function,ϕ is the pairwise interaction term and
b ̸= a denotes all the neighbors of atoma. The force at each atom is

∂V

∂qa
=

∑
b

{[F ′(ρa) + F ′(ρb)]f
′(rab) + ϕ′(rab)}

rab
rab

(B3)

with
rab = Ra −Rb

The trace of the stiffness matrix,Ka is of the form

TrKaa =
∑
b

[
ϕ′′(rab)+2

ϕ′(rab)

rab

]
+
∑
b

F ′′(ρb)[f
′(rab)]

2+
∑
b

F ′′(ρa)f
′(rab)

{∑
c

f ′(rac)
rac
rac

}
· rab
rab

+
∑
b

[F ′(ρa) + F ′(ρb)]

[
f ′′(rab) + 2

f ′(rab)

rab

] (B4a)
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The gradient of the trace of the stiffness matrix,Ka is

∂

∂ua
TrKa =

∑
b

[
ϕ′′′(rab) + 2

ϕ′′(rab)

rab
− 2

ϕ′(rab)

r2ab

]
rab
rab

+
∑
b

[F ′(ρa) + F ′(ρb)]

×
[
f ′′′(rab) + 2

f ′′(rab)

rab
− 2

f ′(rab)

r2ab

]
rab
rab

+
∑
b

2F ′′(ρb) f
′′(rab)f

′(rab)
rab
rab

+
∑
b

F ′′(ρb)f
′(rab)

[
f ′′(rab) + 2

f ′(rab)

rab

]
rab
rab

+
∑
b

F ′′′(ρb)[f
′(rab)]

3 rab
rab

+
∑
b

F ′′(ρa)

[
f ′′(rab) + 2

f ′(rab)

rab

]{∑
c

f ′(rac)
rac
rac

}

+
∑
b

F ′′′(ρa)

[{∑
c

f ′(rac)
rac
rac

}
·

{∑
c

f ′(rac)
rac
rac

}]{∑
c

f ′(rac)
rac
rac

}

+
∑
b

2F ′′(ρa)

[∑
c

{
f ′(rac)

rac
δ+

(
f ′′(rac)−

f ′(rac)

rac

)
1

r2ac
rac ⊗ rac

}]{∑
c

f ′(rac)
rac
rac

}

(B4b)

The gradient of the trace of the stiffness matrix,Kb, b being a neighbor of atoma, is

∂

∂ua
TrKb =

[
ϕ′′′(rab)+2

ϕ′′(rab)

rab
−2

ϕ′(rab)

r2ab

]
rab
rab

+[F ′(ρa)+F ′(ρb)]

[
f ′′′(rab)+2

f ′′(rab)

rab
−2

f ′(rab)

r2ab

]
rab
rab

+ 2F ′′(ρa) f
′′(rab)f

′(rab)
rab
rab

+ F ′′(ρb)f
′(rab)

[∑
c

f ′′(rbc) + 2
f ′(rbc)

rbc

]
rab
rab

+F ′′′(ρb)f
′(rab)

[{∑
c

f ′(rbc)
rbc
rbc

}
·

{∑
c

f ′(rbc)
rbc
rbc

}]
rab
rab

+ 2F ′′(ρb)

(
f ′′(rab)−

f ′(rab)

rab

)[{∑
c

f ′(rbc)
rbc
rbc

}
· rab
rab

]
rab
rab

+2F ′′(ρb)
f ′(rab)

rab

{∑
c

f ′(rbc)
rbc
rbc

}

+ F ′′(ρa)[f
′′(rab) + 2

f ′(rab)

rab
]

{∑
c

f ′(rac)
rac
rac

}
+ F ′′′(ρa)[f

′(rab)]
2

{∑
c

f ′(rac)
rac
rac

}

+
∑
d

F ′′′(ρd)f
′(rad)[f

′(rab)]
2 rad
rad

+
∑
d

F ′′(ρd)f
′(rad)

[
f ′′(rbd) + 2

f ′(rbd)

rbd

]
rad
rad

(B5)

In the last two terms,d represents those neighbors ofb that are also neighbors ofa.
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