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Approaching experimentally relevant strain rates has been a long-standing challenge for molecular

dynamics method which captures phenomena typically on the scale of nanoseconds or at strain

rates of 107 s�1 and higher. Here, we use grain boundary sliding in nanostructures as a paradig-

matic problem to investigate rate dependence using atomistic simulations. We employ a combina-

tion of time-scaling computational approaches, including the autonomous basin climbing method,

the nudged elastic band method, and kinetic Monte Carlo, to access strain rates ranging from

0.5 s�1 to 107 s�1. Combined with a standard linear solid model for viscoelastic behavior, our simu-

lations reveal that grain boundary sliding exhibits noticeable rate dependence only below strain

rates on the order of 10 s�1 but is rate independent and consistent with molecular dynamics at

higher strain rates. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977105]

I. INTRODUCTION

Grain boundaries (GBs) play an important role in deter-

mining the mechanical properties of polycrystalline materi-

als such as strength, toughness, and creep.1 This becomes

even more accentuated as the microstructural dimensions

reach the nanoscale. Owing to the high density of interfaces,

the mechanical response of nanocrystalline materials is pri-

marily governed by grain boundary mediated processes such

as sliding, migration, and interaction of dislocations with

grain boundaries (see Ref. 2 for a review). In particular, one

of the key atomistic mechanisms governing creep in poly-

crystalline materials is grain boundary sliding and diffu-

sion.3–7 Hence, although grain boundary sliding and its role

in creep have been actively studied over the past decades

providing vital insights, renewed efforts are being invested

in experiments and simulations to provide atomistic insights

into grain boundary sliding in nanostructures.8–15 While con-

ventional molecular dynamics (MD) methods have played an

important role in shaping our understanding of deformation

mechanisms in nanostructured materials, they have been

severely limited to timescales of nanoseconds or strain rates

of 107 s�1 and higher. This bottleneck stems from the fact

that a typical MD timestep is about a femtosecond in order

to capture the thermal vibrations of the atoms. This has

rendered them incapable of furnishing physical insights with

atomistic fidelity into time-dependent deformation such as

creep, and the associated grain boundary sliding and diffu-

sion, which typically occur on the timescale of seconds and

beyond, even years.

Recently, a novel energy landscape sampling approach

known as the autonomous basin climbing (ABC) method

was developed by Yip and coworkers,16,17 to enable the

study of time-dependent phenomena while maintaining

atomistic resolution. Over the years, the ABC approach and

the methods based on these ideas have shown great promise

in modeling phenomena governed by rare events and slow

processes such as creep, grain boundary sliding, diffusion,

and strain rate sensitivity, problems that have so far been

beyond the scope of conventional atomistic methods.14,16–25

Gouissem et al.14 employed the ABC method to obtain, from

atomistics, a constitutive law for grain boundary sliding and

provide fresh insights into the largely phenomenological the-

ories for grain boundary sliding. They compared their results

with the MD simulations of Qi and Krajewski,10 which

showed the existence of a threshold force below which the

grain boundary sliding cannot be observed. In contrast,

Gouissem et al. revealed that the threshold was in fact negli-

gible if the system was allowed enough time to jump from a

stable state to another by reaching a time scale of millisec-

onds instead of only picoseconds. Fan et al.21 studied the

interaction of an edge dislocation with a cluster of self-

interstitial atoms using a constant strain rate version of this

time-scaling approach. They reported a new deformation

mechanism as they reached low strain rates of 103 s�1, which

was previously unobserved via conventional MD. Yan and

Sharma25 further demonstrated the importance of time-

scaling in atomistics by simulating nanopillar compression at

difference strain rates. Interestingly, their work revealed that

although the high strain rate behavior shows defect structures

comparable to conventional MD, the slow compression

leads to a liquid-like behavior, which was consistent with

experiments.

In this work, we seek to elucidate the rate dependence of

grain boundary sliding in nanostructures by employing the

new iterative strain method, a modification of the ABC

method, introduced by Fan et al.21 Specifically, we investi-

gate the effect of strain rates on grain boundary sliding in an

aluminum nanopillar under shear deformation. The key steps

of our time-scaling computational approach are as follows

(Fig. 1): (1) ABC algorithm is used to sample the potential

energy surface (PES) at a constant prescribed shear strain;

(2) Nudged elastic band method (NEB) is used to refine the

energy barriers between two minima furnished by ABC; (3)a)Electronic mail: ykulkarni@uh.edu
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Kinetic Monte Carlo (KMC) is used to predict the most prob-

able final state based on the activation barriers for various

events; (4) Given a constant strain rate and temperature, the

new increment of strain is calculated based on the transition

state theory (TST). The details of the computational

approach are provided in Sec. II.

II. SIMULATION METHODOLOGY

In this study, we use a symmetrical R5(310)[001] tilt

GB in an Al bicrystal as a representative grain boundary in a

face-centered-cubic crystal structure (Fig. 2). The tilt axis of

this GB is along the [001] direction which is aligned with the

z axis of our specimen. The symmetrical tilt GB can be con-

structed by taking two face-centered-cubic (fcc) grains of the

same material and crystallographic orientation and rotating

them around the tilt axis such that the upper grain is rotated

by � h
2

and the lower is rotated by h
2
. The mirror symmetry of

the two grains can then be viewed with respect to the tilt

axis.9 This GB corresponds to a tilt angle h of 36.87� and is

considered to be a high angle GB.

All simulations are performed in LAMMPS.26 The

bicrystal is created at 0 K using the code developed by

Tschopp and McDowell.27 The atomistic interactions are

modeled using the embedded-atom (EAM) interatomic

potential developed by Liu et al.28 for Al. The initial super-

cell is periodic in all directions and consists of 57 120 atoms.

The potential energy is first minimized through the conjugate

gradient method, and then, the system is equilibrated at

300 K for 50 ps under the NPT thermodynamic ensemble.

The actual non-periodic bicrystal used in our study is

obtained by cutting it out of the supercell in order to study

the grain boundary mediated deformation in a nanostructure.

The final dimensions of this structure are 40 Å � 58 Å � 38

Å. The specimen consists of 5616 atoms.

The various components of the time-scaling algorithm

used in our study are illustrated schematically in Fig. 1. The

ABC method is an activation-relaxation technique for sam-

pling the potential energy landscape starting with the system

in an initial local minimum. This is achieved by applying

a penalty function to the potential energy of a system of

particles with or without external loading (activation) fol-

lowed by static energy minimization (relaxation). The 3N-

dimensional penalty function is assumed to be Gaussian and

expressed as

Uk
p rð Þ ¼ x exp � r � rk

min

� �
2r2

� �
; (1)

where x and r are the parameters for the Gaussian distribu-

tion: x controls the height and r refers to the width. rk
min is

the position at the minimum configuration and the applied

penalty iteration k. Repeating this process eventually pushes

the system out of its initial well into another neighboring

local minimum. In our study, the ABC method is applied

under a prescribed strain (which is zero in the initial run).

Although ABC is an efficient and reliable method for

capturing energy barriers and atomistic configurations at the

identified minima without knowing the final states a priori,
the penalty functions affect the accuracy of the saddle points

between consecutive minima and it is now known that the

activation barriers tend to be overestimated.16,25 To over-

come this issues, we enrich the model by employing the

NEB method29 to extract more accurate minimum energy

pathways and transition state configurations between the ini-

tial state and the different possible final states collected

through ABC. Based on a matrix of these different energy

barriers, KMC30 is employed to predict the most probable

final state the system is likely to move to from an initial min-

imum. KMC invokes the TST to determine the rate constant

associated with each barrier crossing expressed as

kij / exp � DE

kBT

� �
; (2)

where kij is the rate constant for one single barrier crossing

event from minimum i to minimum j, DE is the barrier

energy calculated from NEB, kB is the Boltzmann constant,

and T is the temperature. In KMC simulations, the probabil-

ity of each transition event is defined as the rate constant of

this event divided by the summation of the rate constants for

all possible transitions from the current state. Thus, KMC

method allows us to predict the most probable path that the

system is going to take during microstructural evolution by

FIG. 1. Algorithm for the time-scaling atomistic method used in this study.

FIG. 2. Cross-section showing the atomistic structure of the bicrystalline

nanopillar containing a R5(310)[001] GB.
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determining the most probable jump from the current state to

all possible final states collected by ABC (ini-

tial–final1–final2–final3… finaln) instead of limiting the

choice to two collected stable states from ABC (initial–final)

(Fig. 1). In order to account even for the low probability

events, a random number in the range of (0–1) is generated

each time, and one of the events acquiring a probability

higher than this number is selected.

The last key step in the algorithm is the modified version

of ABC method for constant strain rate proposed by Fan

et al.21 Once a possible transition event is selected through

KMC, the harmonic approximation of the TST is invoked to

determine the transition time Dt for the event as

Dt ¼ �0 exp � DE

kBT

� �� ��1

; (3)

where �0 is the jump frequency taken to be about 1013 s�1

and DE is the energy barrier between two states calculated

from NEB as before. Then, the new strain to be applied in

the subsequent ABC run is estimated by using the relation

� ¼ _�Dt for a given constant temperature and strain rate _�.
We emphasize that TST enables us to account for the effect

of the temperature which is not considered during the

activation-relaxation step of ABC as it simply maps the PES

through molecular statics. In the present study, we imple-

ment three shear simulations at 300 K under strain rates rang-

ing from those comparable to MD to those beyond the scope

of MD. The results are discussed in the following section.

III. RESULTS

Using the algorithm outlined above, we perform shear

simulations on the bicrystal shown in Fig. 2 at three different

strain rates, specifically, 0:5 s–1; 103s–1, and 107s–1. For the

sake of direct comparison, MD simulation is also performed

on the same structure initially equilibrated at 300 K, but

deformed at a temperature close to zero under a strain rate of

107s–1.

Fig. 3 shows the stress versus strain plot for different

strain rates using the time-scaling approach and MD.

Overall, we observe two different trends: the 107s–1 and

103s–1 stress-strain curves from ABC show a behavior that is

consistent with MD, whereas the 0.5 s�1 strain rate results

are distinct. Nevertheless, the deformation mechanism under

all the different strain rates investigated using both

approaches is primarily grain boundary sliding as shown in

Fig. 4. The method used to identify the GB deformation

mechanism as sliding is described below. We also performed

MD simulations on the same grain boundary with periodic

boundary conditions (to simulate an infinitely large speci-

men), and we found that the deformation mechanism under

shear was still GB sliding. Since the deformation mechanism

remains the same, we note that it enables us to study the rate

dependence of a specific mechanism.

The agreement between the time-scaling approach and

MD results for the 107s�1 strain rate is expected and serves

to validate our time-scaling simulations. For the 107s–1 strain

rate, the system yields at 1.2 GPa which is only about 7.7%

lower than MD. The elastic modulus calculated from both

methods is identical. More importantly, the post-yield saw

tooth behavior in both cases is also similar. Interestingly, the

overall stress-strain response and the yield stress, at a much

lower strain rate of 103s–1, are almost similar to the 107s–1

case, although it shows some minor differences in the plastic

behavior. Specifically, the stress in the 103s–1 strain rate case

shows a more drastic drop after yield than the 107s–1 case. In

order to quantify the GB sliding, we track two atoms, one in

the upper grain and the other in the lower grain. Both atoms

are chosen to be in the center of the nanopillar and at about

5 Å from the grain boundary. The positions in the x-direction

of these atoms are recorded for every reaction coordinate.

The GB sliding is defined as the difference between the x-

coordinates of the tracked atoms at every reaction coordi-

nate. Fig. 5 displays the sliding as a function of the strain for

the different cases.

Fig. 5 reveals that the sliding versus strain response for

the 103s–1 and 107s–1 high strain rate ABC is in agreement

FIG. 3. Stress versus strain plots for different strain rates using the time-

scaling approach and molecular dynamics.

FIG. 4. Atomistic structures showing grain boundary sliding at different

strains for the strain rate of 103s�1.
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with the MD results. In addition, comparing Figs. 3 and 5,

we note that the larger drops in stress correspond to rela-

tively greater GB sliding in the case of the 103s–1 strain rate

than the 107s–1 case.

In contrast, the stress-strain curve (Fig. 3) for the low

strain rate of 0.5 s�1 reveals a significantly lower yield stress.

Although the elastic modulus appears to be rate independent,

the yield occurs at a much lower stress of 0.8 GPa, which is

about 38% lower than the yield stress at MD strain rate.

Early yielding indicates that a different deformation mecha-

nism than the high strain rate might be at play at the low

strain rate. Thus, we consider the assessment of all possible

mechanisms—GB sliding, GB migration, or GB rotation—

that could have occurred albeit in small magnitude. We use

several processing techniques to quantify all these possible

mechanisms. In order to estimate the migration, we track the

same atoms that we use for estimating the sliding but in the

normal (y) direction. We do not notice any measurable GB

migration. For GB rotation, we follow the approach by

Cheng et al.13 and do not observe any occurrence of GB rota-

tion. Finally, we quantify the GB sliding using the same

technique described earlier and indeed observe GB sliding

with jumps in sliding corresponding to drops in stress. Thus,

we conclude that the deformation mechanism at low strain

rates is basically GB sliding, but the increments are smaller

and occur at stresses lower than the high strain rate cases

(Figs. 3 and 5).

IV. DISCUSSION

To quantify the rate dependence revealed in our simula-

tions, we note that mechanics of grain boundary sliding can

be understood as a viscous response.1,3,5 To this end, we use

the spring dashpot model for a standard linear solid as shown

in the inset of Fig. 6. Here, ke denotes the stiffness of the

spring that corresponds to the elastic component, g and

k1 denote, respectively, the viscosity and the stiffness of

the spring in the Maxwell arm that corresponds to the

viscoelastic component. Then, for constant strain rate, R, the

stress-strain relation is given by

r ¼ keeþ Rg 1� exp�
k1
Rge

h i
: (4)

The simulation results for the three strain rates are fitted to

this equation to obtain estimates for the three material

parameters. Given k1

gR for a particular grain boundary, there

should be a certain strain rate R above which the behavior or

sliding will be strain rate independent. Using the least square

method for fitting the simulation data yields ke¼ 0.6 GPa,

k1¼ 15.5 GPa, and g¼ 2.1 GPa-sec. Taylor’s expansion of

the exponential term shows that when the strain is much

smaller than gR
k1

, the response is rate independent and we

obtain the Hooke’s law

r ¼ ke þ k1ð Þe: (5)

Using the parameter values extracted above, the factor gR
k1

is

estimated to be about 0.15R. Considering that the applied

strains reach up to 0.2 (20% strain), the model predicts that

grain boundary sliding should become rate independent at

strain rates of around 10 or higher. This is an interesting

revelation and also consistent with our simulations that

indicate strain rate independence at 103s–1 and 107s–1 strain

rates. Furthermore, our simulations indicate that the shear

modulus is rate independent. Based on the above expres-

sion, the shear modulus is given by keþ k1 which is about

16 GPa and is consistent with the modulus obtained for Al

directly from MD simulation for the given interatomic

potential.

Fig. 6 shows the stress-strain curves for different strain

rates predicted by fitting the standard linear spring-dashpot

model to simulation data. As estimated above, we observe

that the grain boundary sliding indeed exhibits noticeable

rate dependence below strain rates on the order of 10 s�1 and

is rate independent and consistent with molecular dynamics

at higher strain rates. We would like to mention that since

we assume a linear spring dashpot model, it captures the rate

independent elastic part at higher strain rates but does not

FIG. 5. GB sliding versus strain plots for different strain rates using ABC

and MD.

FIG. 6. Stress-strain curves for different strain rates predicted by fitting the

standard linear solid spring-dashpot model to simulation data. The discrete

points indicate simulation data, while solid lines represent the curves

obtained from the spring-dashpot model.
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capture the rate independent plasticity and the yield stress.

The model can be enriched further to predict the yielding

even at high strain rates by using a spring with a nonlinear

power-law behavior. Nevertheless, the present model suffi-

ces to make a quantitative prediction of when the deforma-

tion mechanism becomes rate independent which is the focus

of this paper.

Finally, we wish to note that although the stress versus

strain and sliding versus strain curves are insightful, the

importance of time-scaling approaches is further emphasized

by plotting the stress and sliding versus time. As shown in

Fig. 7, the time-scaling method is able to capture GB sliding

that occurs on the order of seconds when the strain rate is

0.5 s�1. Accessing these time scales while maintaining atom-

istic resolution is beyond the scope of molecular dynamics

by several orders of magnitude.

V. CONCLUSION

In this work, we investigate the strain rate dependence

of grain boundary sliding in nanostructures by way of

recently developed time-scaling atomistic approaches. The

shearing of a nanopillar with a high angle grain boundary is

used as a representative problem. We employ a combination

of techniques including the autonomous basin climbing

method, the nudged elastic band method, and kinetic Monte

Carlo, to sample the potential energy landscape of the system

and capture its behavior under strain rates ranging from

0.5 s�1 to 107 s�1. Combined with the standard linear solid

model for viscoelastic behavior, our study furnishes quantita-

tive predictions about the rate sensitivity of grain boundary

sliding. As the deformation mechanism for this grain bound-

ary structure remains the same at all strain rates, it is

revealed that sliding becomes rate independent beyond strain

rates of the order of 10 s�1 and hence consistent with

molecular dynamics. The ramifications of this conclusion are

two-fold. Since it shows the validity of molecular dynamics

results over several orders of magnitude, it offers avenues to

bridge the gap between experiments and molecular dynamics

simulations, specifically in investigating grain boundary slid-

ing and atomistic origins of creep. Furthermore, taken

together with other studies, it provides evidence for the

quantitative insights inaccessible to conventional atomistic

methods that can be gleaned from time-scaling computa-

tional approaches.
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