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Atomistic modeling of grain boundary motion as a random walk
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Mechanical behavior of polycrystalline materials, such as creep and microstructural evolution, is dramatically
impacted by the mobility of grain boundaries. Existing methods for extracting mobility that combine atomistic
simulations with conventional Brownian-like random walk model for grain boundary motion miss critical
insights and are reliable only above very high (and unrealistic) temperatures. In this paper, we present a
computational method based on the classical Green-Kubo relation for computing interface mobility over a wide
range of temperatures. Our study makes an intriguing revelation that the severe time limitation of molecular
dynamics simulations warrants the use of a generalized diffusion equation for Brownian particles not accounted
for in current studies. Moreover, the method furnishes analytical expressions for the interface mobility in terms of
the velocity autocorrelation functions. Taken together, our results possibly provide the first reliable estimates for
interface mobility in the limit of zero driving forces. This is in sharp contrast to studies based on the widely used
interface random walk approach, which extracts mobility by fitting the conventional Brownian motion equation
to atomistic simulations. The efficiency of the method and applicability over a range of temperatures should
open avenues for integration of computations and experiments to understand and engineer material systems with
desired properties.
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I. INTRODUCTION

Grain boundary (GB) mediated processes such as sliding,
migration, and interaction with other defects, play a vital role
in plasticity, damage, and failure in polycrystalline materi-
als, including structural metallic systems, and have been the
subject of longstanding interest [1–16]. The kinetics of these
crystalline interfaces is governed by a key parameter, the grain
boundary mobility, which is an intrinsic property of the grain
boundary that dictates grain boundary migration, and hence,
the microstructural evolution and the concomitant evolution
of material properties. Taking into account the structural
dependence and environmental factors, the interface mobility
M , is the coefficient relating the exerted pressure F and the
migration or normal velocity of the grain boundary v through
the well-known relation, v = MF .

With rapid advances in high-performance computing,
atomistic methods, such as molecular dynamics (MD), are
being increasingly used to investigate grain boundary mobility
[17–29], especially since controlled experiments are challeng-
ing to perform. Based on the thermal fluctuations of interfaces,
Trautt et al. [23] introduced a novel computational method,
the so-called interface random walk method, to capture the
interface mobility in the zero driving force limit. The approach
is based on monitoring the mean interface displacement along
the direction normal to the (flat) interface at high tempera-
tures, typically about 0.8 homologous temperature. By regard-
ing this motion as a random walk, the fluctuation-dissipation
relation is invoked to furnish the interface diffusion equation
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〈h̄2〉 = Dt in terms of the variance of the mean boundary
displacement, h̄(t ) (see Fig. 1). The diffusion coefficient
associated with this Brownian motion is then related to the
interface mobility as D = 2MkBT

A
, where A is the area of the

interface. Deng and Schuh [25,26] proposed an interesting
postprocessing approach, and showed that it extended the
application of the interface random walk approach to low
temperatures, up to 0.2 homologous temperature. In recent
years, the interface random walk model has been widely
used for predicting the absolute interface mobilities in various
materials systems.

In this paper, we seek to ascertain the theoretical basis
of the random walk model for grain boundary motion and
explore its limitations, if any, over a range of temperatures.
Our study furnishes a rather unexpected but critical insight
into a shortcoming of conventional approaches that combine
atomistic simulations with the random walk model for grain
boundary motion and how it can be circumvented. Specifi-
cally, we show that, owing to the severe time limitation of
molecular dynamics simulations, it is imperative to use a
generalized diffusion equation for the Brownian motion in
order to correctly represent grain boundary migration as a
random walk. This is in contrast to existing studies based on
the interface random walk method, which use the conventional
diffusion equation for the interface mentioned before. This
intriguing insight sets the stage for an alternative efficient
computational scheme based on the classical Green-Kubo
relations [30,31] for computing grain boundary mobility in
the limit of zero driving forces. A further advantage over the
interface random walk approach is that this method yields
analytical expressions for the mobility in terms of the velocity
autocorrelation functions.
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FIG. 1. Schematic of a fluctuating grain boundary exhibiting
normal motion. The gray atoms represent the initial mean position
of the grain boundary taken as the reference. The instantaneous
interface height profile is denoted by h(x, z). The dashed black line
marks the instantaneous mean position of the grain boundary with
the mean boundary displacement denoted by h̄(t ).

II. THEORY

A. Generalized boundary diffusion equation

We begin by deriving the generalized diffusion equation
for a grain boundary regarded as a Brownian particle in
terms of its mean-square displacement. To this end, let us
first introduce the mean boundary displacement, h̄(t ), defined
as the average displacement of every atom residing in the
grain boundary in the direction of migration at time t (see
Fig. 1). We then define a new variable, s(i), as the incremen-
tal mean boundary displacement from time ti−1 = (i − 1)�t

to ti = i�t such that sj (i) = h̄j (i) − h̄j (i − 1). Here, j =
1, 2, . . . , N denotes number of simulation samples, and i =
2, . . . , n denotes the number of time intervals of sampling.
We assume sj (1) = h̄j (1).

Introducing v̄(i) = s(i)/�t as the average grain boundary
velocity in the time interval from ti−1 to ti , the velocity
autocorrelation function for the grain boundary motion can
be expressed as [32]

R(k) = 〈v̄j (i)v̄j (i + k)〉

= 1

�t2

1

n − k

n−k∑
i=1

⎡
⎣ 1

N

N∑
j=1

sj (i)sj (i + k)

⎤
⎦. (1)

We further note that the boundary displacement is the accumu-
lated incremental displacement, that is, h̄j (t ) = ∑n

i=1 sj (i).
Then, the mean-square displacement can be evaluated in terms
of the velocity autocorrelation functions using Eq. (1). It is
rather surprising that 〈h̄2(t )〉 obtained from velocity autocor-
relations has the form

〈h̄2(t )〉 = Dt + C, (2)

which we refer to as the generalized interface diffusion
equation. Here, C = −2(�t )2 ∑n−1

k=1 kR(k) and t = n�t . The
grain boundary diffusion coefficient D is obtained as

D = �t

[
R(0) + 2

n−1∑
k=1

R(k)

]
. (3)

The ramifications of this derivation are many. First, we remark
that the derivation presented here is based on the Langevin
theory of Brownian motion according to which the mean-

square displacement of a Brownian particle contains a con-
stant term and an exponentially decaying term, in addition to
the term linear in time [33]. However, at t sufficiently large,
these terms are neglected to yield the well-known diffusion
equation for a random walk, 〈h̄2〉 = Dt . While working on
long time scales, typically in theoretical analyses and simu-
lations of macroscopic systems, this assumption works well.
However, when using MD simulations to study Brownian
motion, which provides data spanning a few hundred pi-
coseconds at best, this assumption requires scrutiny. Indeed,
as is illustrated by our MD simulations, the effect of the
intercept C in Eq. (2) cannot be ignored, except at high
temperatures. In other words, it is the severe time limitation of
atomistic simulations that warrants the use of the generalized
diffusion equation for Brownian particles, which is not taken
into account in current studies based on the interface random
walk approach and which may lead to considerable errors in
mobility estimates.

Second, Eq. (3) illustrates that the autocorrelation func-
tions furnish an analytical expression for grain boundary
diffusion coefficient, which is in contrast to the interface
random walk approach, where D is extracted by fitting the
conventional diffusion equation to atomistic simulations. We
would like to note that Deng and Schuh [26] also obtained
a similar equation as our Eq. (2) but they only considered
the correlation between adjacent time intervals. Thus, their
definitions for D and C were different (or rather incomplete)
compared to the expressions derived in this work. Later,
we will present our simulation results, which highlight the
importance of considering the full autocorrelation function as
opposed to just adjacent time intervals.

Finally, the derivation of the generalized boundary diffu-
sion equation opens an avenue for computing grain boundary
mobility based on the classical Green-Kubo relation, which
expresses transport coefficients in terms of integrals of veloc-
ity autocorrelation functions. The details of the derivation are
provided in the next section.

B. Green-Kubo relation for grain boundaries

We begin by considering a bicrystal containing a GB with
periodic boundary conditions in lateral (X and Z) directions.
At finite temperature, the height profile h(r, t ) of the fluc-
tuating GB is shown in Fig. 2. Following the classical GB
migration relation from kinetic theory, we have

v(r, t ) = MF (r, t ), (4)

where the coordinate r = (x, z) is restricted to the interfacial
plane, and F (r, t ) is the force acting on the GB. According
to the Langevin theory of Brownian motion, the force F (r, t )
includes thermal noise ξ (r, t ) and a curvature restoring force
fc(r, t ). The thermal noise is treated as a Langevin force
associated with thermal fluctuations and is assumed to be
uncorrelated [23]. That is,

〈ξ (r, t )ξ (r′, t ′)〉 = 2kBT

M
δ(r − r′)(t − t ′). (5)

Under the small slope approximation hx � 1, hz � 1, the
curvature restoring force fc is given by

fc(r, t ) = �(hxx + hzz), (6)
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FIG. 2. Schematic showing the thermal fluctuations of a grain
boundary. The blue dotted line represents the mean GB profile; red
solid line corresponds to the actual fluctuating GB.

where � is known as the GB stiffness [34] and hxx and hzz are
the principal curvatures. Then Eq. (4) can be rewritten as

v(r, t ) = ∂h(r, t )

∂t
= M[�(hxx + hzz) + ξ (r, t )]. (7)

We define the mean GB displacement, h(t ), as the average
displacement of every atom residing in the grain boundary in
the direction of migration at time t . That is,

h(t ) = 1

A

∫ Lx

0

∫ Lz

0
h(r, t )dxdz, (8)

where A = LxLz is the GB area. Similarly, the mean GB
migration velocity v(t ) can now be defined as

v(t ) = ∂h(r, t )

∂t

= 1

A

∫ Lx

0

∫ Lz

0
M[�(hxx + hzz) + ξ (r, t )]dxdz. (9)

Due to periodicity along the X and Z directions, the spatial
integral of the curvature restoring force vanishes. That is,

1

A

∫ Lx

0

∫ Lz

0
M[�(hxx + hzz)]dxdz = 0. (10)

This yields

v(t ) = Mξ (r, t ), (11)

where ξ (t ) = 1
A

∫ Lx

0

∫ Lz

0 ξ (r, t )dxdz denotes the spatial aver-
age of the thermal noise. The velocity autocorrelation func-
tions can now be defined as

R(τ ) = lim
Q→∞

1

Q

∫ Q/2

−Q/2
< v(t )v(t + τ ) > dt. (12)

FIG. 3. (a) Atomistic configuration of the MD simulation cell
with a �5(310)[001] GB visualized using OVITO [35]. (b) Snapshot
of the fluctuating grain boundary at finite temperature with atoms
colored using centrosymmetry parameter. The red curve indicates
the instantaneous height profile, h(r, t ), and the dashed white line
marks the mean boundary displacement, h̄(t ), of the fluctuating grain
boundary.

Combining Eq. (5), Eq. (11), and Eq. (12) together, we obtain

R(τ ) = 2MkBT

A
δ(τ ). (13)

Integrating both sides and taking into account that R(τ ) is an
even function (by definition), we obtain the classical Green-
Kubo relation for the GB diffusion coefficient

D = 2MkBT

A
= 2

∫ ∞

0
R(τ )dτ. (14)

The corresponding mobility M is then expressed as

M = A

kBT

∫ ∞

0
R(τ )dτ. (15)

The discrete form for this equation used to extract the GB
mobility from atomistic simulations in our study is given by

M = A�t

kBT

[
R(0)/2 +

n−1∑
k=1

R(k)

]
. (16)

It can be seen that the expression for D in Eq. (3) is exactly the
discrete form of Eq. (14). Thus, the Green-Kubo relation fur-
nishes an efficient way to estimate grain boundary mobilities
based on velocity autocorrelation functions, which can easily
be computed from MD simulations.

III. SIMULATIONS

For validation, we present MD simulations to estimate the
mobility of a �5(310)[001] symmetric tilt grain boundary in
a Nickel bicrystal (see Fig. 3). The size of the simulation
cell was 13.3 nm × 22.2 nm × 1.0 nm with periodic bound-
ary conditions in X and Z directions. The system was free to
relax in the Y direction, which is normal to the boundary.

Simulations were performed using LAMMPS [36] at temper-
atures ranging from 400–1200 K. The embedded-atom (EAM)
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interatomic potential by Ackland et al. [37] was employed.
Energy minimization of the simulation cell was performed
by using the heating-and-quenching approach outlined by
Deng and Schuh [26]. To be specific, each system was first
equilibrated at 1300 K for 25 ps under the NPT ensem-
ble, then gradually annealed to the desired temperature for
25 ps, and subsequently relaxed at the desired temperature
for another 25 ps. After this relaxation process, the sample
was equilibrated for 2 ns under the NVT ensemble using the
Nose-Hoover thermostat. The atomistic configuration of the
simulation cell was observed every 1 ps. Using the approach
described in our previous work [16,38], we extract the instan-
taneous profile of the grain boundary using the centrosym-
metry parameter and determine its mean displacement h̄(t ).
The mean-square displacement is calculated by performing
multiple simulations, in parallel with different initial random
velocities in LAMMPS. Specifically, we used 20 independent
runs to calculate the ensemble averages, which is consistent
with existing literature [23–26].

To understand the effect of cell size and geometry, we note
that for the cell dimensions used in our work and other similar
studies [23,25], the type of boundary conditions normal to the
interface appears to have a negligible effect on the thermal
fluctuations of the interface. Specifically, we found very good
agreement between the mobility values obtained by us using
free boundary conditions and those reported by Deng and
Schuh [25] using fully periodic boundary conditions for the
�5(310) grain boundary in Ni using the same interatomic
potential at the same temperature. Furthermore, in-plane pe-
riodic boundary conditions with a ribbonlike geometry of the
grain boundary may possibly introduce numerical artifacts in
the calculation of the interface mobility. In their original paper
on the random walk model, Trautt et al. [23] investigated
the effect of doubling the in-plane dimensions as well as the
effect of a square cross section (instead of a ribbon-shaped
cross section). They reported that although the fluctuations
in the interfacial height profile decreased, the slope of the
variance, 〈h̄2〉, versus time, which is used in the mobility
calculations remained the same. Hence, similar ribbonlike
geometries with periodic boundary conditions have been used
in majority of the mobility studies in the literature [23,25]. We
also performed additional simulations on our �5(310) grain
boundary with a square cross section for Cu and Ni at high
temperatures. We found that the mobility values varied only
negligibly with the cell size and shape.

To verify the effect of the number of samples on our
mobility results, we also repeated our calculations for the Ni
�5(310) grain boundary using the Ackland et al. potential
[37] based on 30 samples at two temperatures, specifically,
400 K and 1200 K. At 1200 K, the error was within 1%.
At 400 K, the error was within 10%, which we believe is
reasonable given that the absolute mobilities are on the order
of 10−10. Thus, at both low and high temperatures, we found a
negligible effect of the number of samples beyond 20 indepen-
dent runs. Figure 4 shows the velocity autocorrelation plots for
the two cases (comparing results for N = 20 and N = 30),
which show no discernible difference even up to 500 ps.

IV. RESULTS AND DISCUSSION

Figures 5(a)–5(c) show the time evolution of the variance
of mean grain boundary displacement 〈h̄2(t )〉 at 400 K,

FIG. 4. The velocity autocorrelation function as a function of
time at (a) 400 K, and (b) 1200 K, for �5 GB in Ni based on
the potential developed by Ackland et al. [37] using 20 and 30
independent runs for obtaining the ensemble averages. The results
show that there is negligible effect of the number of samples beyond
20 simulations.

800 K, and 1200 K, respectively. These temperatures cover
a range from 0.2–0.7 homologous temperatures. Solid blue
lines represent the linear regression curves based on fitting
Eq. (2). We note that there indeed exists a finite intercept
[see Figs. 5(a), 5(b)]. which needs to be accounted for in
the calculation of the diffusion coefficient. At higher tem-
peratures, as 〈h̄2(t )〉 grows orders of magnitude larger while
the order of the intercept C does not change much, its effect
becomes less important [see Fig. 5(c)]. In order to examine the
intercept quantitatively, we performed curve fitting according
to Eq. (2) and equation 〈h̄2(t )〉 = Dot (without the intercept).
The results for the latter are denoted by solid black lines in
Figs. 5(a)–5(c). We introduce a parameter β defined as the
ratio β = Do/D. As temperature increases, β decreases and
approaches unity denoted by the dashed black line in Fig. 5(d).
This confirms that the effect of the intercept can be ignored
at high temperatures, leading to the validity of the conven-
tional interface random walk model. However, the intercept is
significant at low temperatures, which are in fact physically

FIG. 5. Variance of mean grain boundary displacement for the
�5(310)[001] GB in Ni using the Ackland et al. potential [37] at (a)
400 K (b) 800 K, and (c) 1200 K respectively as a function of time
obtained from MD simulations. (d) The temperature dependence of
β over a range of temperatures.
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FIG. 6. The temperature dependence of the ratio β for (a) �5 GB
modeled using the Baskes et al. potential for Ni [39], and (b) �17 GB
modeled using the Mishin et al. potential for Cu [40].

more relevant, and hence it should be incorporated in the
computations of grain boundary mobility. To demonstrate this,
we consider the temperature of 400 K where β is about 12.
This indicates that if the interface random walk approach is
applied, the mobility estimation should be off by an order of
magnitude. We note that β also depends on the simulation
time. At low temperatures, β would approach 1 and become
independent of time only at much longer times (around few
hundred nanoseconds and larger), which are beyond the scope
of MD. Thus, its dependence on time again demonstrates the
importance of considering the intercept at simulation times
accessible to MD.

For further validation, simulations were also performed on
the same �5(310)[001] grain boundary with a different Ni
potential developed by Baskes et al. [39] (denoted as �5-Ni-
Baskes) and on a �17 (410) symmetric tilt grain boundary
with a Cu potential developed by Mishin et al. (denoted as
�17-Cu-Mishin) [40]. The results for the β parameter as a
function of the temperature are presented in Fig. 6, which
again support our conclusions and the proposed method.

Figures 7(a) and 7(b) show the velocity autocorrelation
functions calculated at 400 K and 1200 K, respectively, based
on Eq. (1) and plotted against time interval τ = k �t where
k = 0, 1, 2, . . . , n and �t = 1 ps. Thus, k = 1 would yield
the autocorrelation function considering only adjacent time
intervals. It can be seen that the velocity autocorrelation
functions, at both temperatures, are such that only the first two
values (that is, for k = 0 and k = 1) are much more significant
than the rest. This makes one wonder whether it suffices to
consider only the adjacent time intervals like in the study by
Deng and Schuh [26]. On the contrary, we demonstrate that
the effect of the long tail cannot be ignored in the computation

FIG. 7. Velocity autocorrelation function, R(τ ), for the �5 GB
in Ni using the Ackland et al. potential at (a) 400 K, (b) 1200 K.

FIG. 8. Absolute grain boundary mobility calculated based on
the Green-Kubo relation for the �5(310)[001] GB in Ni using the
Ackland et al. potential at (a) 400 K, (b) 1200 K.

of the grain boundary mobility, especially at not very high
temperatures.

To obtain the grain boundary mobilities according to
Eqs. (15) or (16), we have to truncate the integral at some
finite value of τ , which we refer to as τcr (= kcr�t ) for the
purpose of numerical calculations. Figures 8(a) and 8(b) show
the plot for mobility versus τcr (� �t = 1 ps), at 400 K and
1200 K, respectively. It can be seen that after the initial
dramatic fluctuations, the mobility converges to an asymptotic
value, which we denote by Masym (denoted by the black lines).
In our calculations, we compute Masym simply by taking an av-
erage over the mobility values in the time interval from 500–
1000 ps. Specifically, at 400 K, the first data point represents
M = 2.28 × 10−8 m2 J−1 s−1 when τcr = 1 ps, which is two
orders of magnitude larger than the asympotic value, Masym =
2.71 × 10−10 m2 J−1 s−1 [Fig. 8(a)]. At 1200 K, M = 2.59 ×
10−7 m2 J−1 s−1 at τcr = 1 ps, which is two times larger
than the asymptotic value, Masym = 1.30 × 10−9 m2 J−1 s−1

[Fig. 8(b)]. In the two cases spanning a wide range of tem-
peratures, mobility calculated by considering only adjacent
time intervals for the autocorrelations is much larger than the
asymptotic value and the difference diminishes only at high
temperatures. This disparity is clear evidence that the long tail
of the autocorrelation function cannot be neglected.

However, one question still remains: Which of these mo-
bility values is the correct one? For this, we now compare
the (asymptotic) mobility obtained from the Green-Kubo
approach [Eq. (16)] with the mobility obtained by directly
fitting the generalized diffusion equation [Eq. (2)] to MD
data. We note here that although Figs. 5(a)–5(c) show data
up to 100 ps, we perform linear regression over 1000 ps to
be consistent with our Green-Kubo simulations. Figure 9(a)
shows the semilog plot for M versus 1/kBT . It can be seen
that the two computational methods are in excellent agree-
ment. There is also a good agreement for the activation energy
with only a small discrepancy (0.99 eV [Eq. (16)] < 1.01 eV
[Eq. (2)]) at high temperature. In the low-temperature regime,
the activation energies are exactly the same. We also note
that, as expected, Masym follows the Arrhenius relation (red
solid line), M ∝ exp(− Qm

kBT
), but with two distinct regimes

having different activation energies Qm. This transition in
grain boundary mobility above a certain temperature has
been reported in prior works and is attributed to structural
transitions in the boundaries as they exhibit a more liquidlike
behavior above the transition temperature [25,29,41,42]. We

093605-5



DENGKE CHEN AND YASHASHREE KULKARNI PHYSICAL REVIEW MATERIALS 2, 093605 (2018)

FIG. 9. Comparison of grain boundary mobility calculated using
Green-Kubo formulation (marked in red) and the generalized inter-
face diffusion equation (marked in blue) for (a) �5 boundary in Ni
with the Ackland et al. potential [37]; (b) �5 boundary in Ni with the
Baskes et al. potential [39] and �17 boundary in Cu with the Mishin
et al. potential [40].

also performed a series of simulations on the same �5 grain
boundary with another Ni potential [39] (denoted as �5-Ni-
Baskes) and on a �17 symmetric tilt grain boundary with a

Cu potential [40] (denoted as �17-Cu-Mishin). Figure 9(b)
shows associated results, which also confirms the validity of
the Green-Kubo method.

V. CONCLUSION

In summary, we present an efficient computational ap-
proach for calculating the mobility of grain boundaries by way
of atomistic simulations in the limit of zero driving forces. The
approach is based on the classical Green-Kubo relation and
furnishes analytical expression for the boundary mobility in
terms of the velocity autocorrelation functions. This makes the
Green-Kubo approach naturally amenable over a wide tem-
perature range. Finally, our study brings to light an important
shortcoming of conventional atomistic simulations in model-
ing grain boundary motion as a random walk. It is revealed
that there is a constant intercept in the generalized interface
diffusion equation for Brownian motion, which is important
to consider in estimating the grain boundary mobility owing
to the time limitation of MD simulations. Taken together, our
results possibly provide the first reliable estimates for inter-
face mobility in the limit of zero driving forces over a wide
range of temperatures. The efficiency and applicability of the
method should open avenues for integration of computations
and experiments to understand and engineer material systems
with desired properties.
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