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a b s t r a c t

Nanotwinned metals have opened up exciting avenues for the design of high-strength,
high-ductility materials owing to the extraordinary properties of twin boundaries. The
recent advances in the fabrication of nanostructured materials with twin lamella on the
order of a mere few atomic layers call for a closer examination of the stability of these
structural motifs, especially at high temperatures. This paper presents a study of the
entropic interaction between fluctuating twin boundaries by way of atomistic simulations
and statistical mechanics based analysis. The simulations reveal that fluctuations of twin
boundaries are considerably enhanced in the presence of adjoining twin boundaries as
their spacing, d, decreases. In addition, the theoretical analysis shows that fluctuating twin
boundaries indeed exhibit an attractive entropic interaction which enhances their thermal
fluctuations and that the entropic force decreases as d1/ 2. This finite temperature inter-
action between twin boundaries is fundamentally distinct from the well-known repulsive
entropic interaction followed by fluctuating lipid membranes as well as many crystalline
membranes and interfaces. This rather surprising attraction between fluctuating twin
boundaries is attributed to their shear coupled normal motion.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Nanostructured materials have gained prominence owing to the exciting array of physical properties that are primarily
governed by the high density of interfaces and interfacial phenomena. For example, nanocrystalline face-centered-cubic
metals, with an average grain size less than 100 nm, witnessed an intensity of research in the nineties owing to their ultra-
high strength compared to their conventional polycrystalline counterparts (Gleiter, 1989; Zhu et al., 2009). However, this
early enthusiasm was met with severe disappointment due to their brittle nature and loss of grain stability attributed to
grain boundary (GB) mediated processes such as sliding and migration (Dao et al., 2007). In contrast, research over the past
decade has provided compelling evidence that a novel class of materials known as the nanotwinned metals may be the
optimal motifs for the design of high-strength high-ductility materials (Lu et al., 2004; Zhang et al., 2006; Hodge et al.,
2008). Indeed, Lu et al. (2004) showed that nanotwinned Cu containing twin lamella of about 35 nm thickness exhibits a
yield strength over 1 GPa with elongation to failure as high as 14%, which is in sharp contrast to nanocrystalline Cu having a
yield strength of about 400 MPa and elongation to failure of about 2–3% for comparable grain sizes. Owing to these superior
properties, nanotwinned metals have been the subject of active research in recent years (Dao et al., 2006; Lu et al., 2009;
Kulkarni and Asaro, 2009; Guo and Xia, 2011; Li et al., 2010; Jang et al., 2012; Wang et al., 2013; Mirkhani and Joshi, 2014;
Wright et al., 2014).
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Nanotwinned fcc metals are designed by the introduction of coherent twin boundaries (CTBs) within ultra-fine crys-
talline metals having a grain size of a few hundred nanometers. The typical twin lamella thickness within each grain ranges
between 20 and 100 nm. Studies performed till date reveal that the CTBs have a very high shear strength compared to most
GBs and are also effective barriers to dislocation motion leading to a Hall–Petch type strengthening mechanism (Kulkarni
et al., 2009; Lu et al., 2009). However, a unique feature of the CTBs is that the twin planes are also slip planes for fcc metals
which enables them to accommodate large plastic strains by absorption of dislocations thus enhancing ductility (Dao et al.,
2006). In addition, experimental studies have revealed even more promising characteristics such as enhanced creep re-
sponse, good thermal stability, and radiation response owing to the presence of both twin and grain boundaries (Bezares
et al., 2012; Demkowicz et al., 2011; Yu et al., 2013). Very recently, Jang et al. (2012) and Wang et al. (2013) have even
fabricated nanotwinned nanowires with twin spacing on the order of a few angstroms. The smallest twin lamella has only
two atomic layers separating adjacent twin boundaries. Through combined experimental and computational studies, Wang
et al. (2013) have shown that these nanowires with ultra-high density twins exhibit yield strength close to the theoretical
strength of the metal. While these superior properties certainly open up exciting avenues for the applications of na-
notwinned materials, they also call for a critical examination of the stability of these structural motifs especially at high
temperatures. By structural instability we imply processes such as grain growth, which are intimately connected to prop-
erties like interfacial stiffness, mobility, as well as the interaction of the constituting interfaces, such as GBs and TBs. An
analysis of the thermal fluctuations based on statistical mechanics provides a convenient and powerful approach to gain
insight into these interfacial properties.

There is a rich literature on the statistical thermodynamics of membranes which was primarily developed for soft
materials – fluid and polymerized membranes – that exhibit large fluctuations (Safran, 2003; Nelson et al., 2004). Based on
equilibrium thermal fluctuations, membrane theory enables estimates for quantities such as bending rigidity and surface
tension. In recent years, the membrane theory has also been applied to study crystalline membranes such as graphene and
other two-dimensional materials (Los et al., 2009; Gao and Huang, 2014), as well as crystalline interfaces, such as GBs, and
solid–liquid interfaces (Hoyt et al., 2001, 2006, 2010) based on thermal fluctuations. In the case of solid interfaces, the
central idea is that the energetic cost for the out-of-plane fluctuation of the interface, which naturally involves deformation
of the adjoining bulk regions, is used to construct an energy associated only with the interface. Then the surrounding bulk
can be neglected and the interface is regarded as a membrane with an appropriate elastic energy. For instance, several high
angle GBs in fcc metals exhibit capillarity induced fluctuations. This means that they can be modeled as membranes whose
out-of-plane fluctuations are governed by surface tension, or more precisely, interfacial stiffness.

Studies based on thermal fluctuations have also shown that membranes exert a repulsive entropic pressure on each
other, due to steric effects, that depends on the inter-membrane distance (Helfrich, 1978; Janke and Kleinert, 1987; Bach-
mann et al., 2001; Freund, 2012, 2013; Hanlumyuang et al., 2014). Unlike the extensive work on the steric interaction of
membranes, the effect of the presence of multiple GBs on their thermal fluctuations has not been addressed before. This
becomes more relevant in the light of the recent fabrication of nanotwinned metals with twin boundary spacing on the
order of angstroms. Motivated by the striking resemblance between a stack of fluctuating biomembranes and an array of
parallel fluctuating twin boundaries (Fig. 1), we seek to elucidate the entropic interaction between fluctuating twin
boundaries constituting a nanotwinned structure at finite temperature.

The rest of the paper is organized as follows. Section 2 provides a review of the theory of equilibrium thermal fluc-
tuations applied to fluid membranes and different types of crystalline membranes and interfaces. The modeling of entropic
interaction between multiple membranes and the effect of this entropic force on their fluctuation spectrum is also briefly
discussed. Section 3 presents the molecular dynamics simulations of the thermal fluctuations of multiple CTBs as a function
of twin boundary spacing. Section 4 presents the statistical mechanics based analysis of the entropic interactions between
fluctuating CTBs. The summary and potential ramifications of these findings are discussed in Section 5.
2. Brief review of equilibrium thermal fluctuations

We begin by providing a brief review of the statistical mechanics of membranes and how the thermal fluctuation spectra
for different membranes and interfaces are related to their interfacial properties.
Fig. 1. Atomistic structure of a section of the nanotwinned specimen depicting parallel coherent twin boundaries fluctuating at 800 K. Only the atoms with
non-zero centrosymmetry parameter (comprising the twin boundaries) are shown.



Fig. 2. Schematic diagram of a freely fluctuating membrane. Different colors indicate different out of plane displacements. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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2.1. Fluctuation spectrum of a free membrane

For a fluctuating fluid membrane (Fig. 2), the energetic cost for the out-of-plane fluctuations arises from the bending
rigidity of the membrane. To understand this, we first treat the membrane as a quasi-one-dimensional interface that is thin
in one direction, such that the fluctuation along this axis can be ignored (Fig. 3). Let b be the width of the thin dimension
and W be the length of the longer dimension, and h(x) be the out-of-plane displacement. Then the Hamiltonian can be
written as

b h x dx
1
2 1

W

0

2∫ κ= [ ″( )] ( )

where κ is the bending modulus, and h x″( ) is the curvature. Expanding h(x) in Fourier space,

h x A k e , 2
ikx∑( ) = ( ) ( )

the Hamiltonian can be expressed in the form

bW k A k
1
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.
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This energy is quadratic in A(k). Using equipartition of energy, we obtain the relationship between the mean square fluc-
tuation spectrum and the wave vector as

A k
k T

bW k
.

4
B2

4κ
〈 ( )〉 =

( )

where 〈·〉 represents ensemble average. Lipid bilayers, graphene and other two-dimensional materials are known to follow
this relation. The fluctuations of many GBs and crystal-melt interfaces can also be modeled in a similar fashion. Previous
studies showed that the fluctuations of high angle GBs and solid–liquid interfaces in fcc metals can be described using the
capillarity or the surface tension model as (Hoyt et al., 2001, 2010)

A k
k T

bW k
,

5
B2

2Γ
〈 ( )〉 =

( )

where Γ is the grain boundary stiffness analogous to the surface tension. However, not all GBs exhibit capillarity induced
fluctuations. A recent study revealed that the fluctuations of GBs that undergo shear-coupled normal motion, such as many
low-angle GBs, display a significantly different response (Karma et al., 2012). Shear-coupled motion refers to the motion of a
GB normal to the GB plane when subjected to shear deformation parallel to the GB plane. Using this property exhibited by
low-angle GBs, Karma et al. (2012) derived a modified expression for their thermal fluctuations as

A k
k T

bWC k
.

6
B2

2β
〈 ( )〉 =

( )

Here, C is a parameter comprising the elastic constants of the materials, and β is a coupling factor defined as

v v/ . 7nβ = ( )∥

Introduced by Cahn et al. (2006), β characterizes the coupling relationship between the velocity parallel to the GB (v∥) and
the concomitant normal GB velocity (vn) during shear-coupled motion. Our previous work further revealed that CTBs also
follow this behavior (Eq. (6)) since they exhibit shear-coupled normal motion (Chen and Kulkarni, 2013). We note that
although lipid membranes, high angle GBs, and CTBs display a different relationship between their fluctuation spectrum A
Fig. 3. A fluctuating membrane approximated as quasi-one-dimensional with b W⪡ , where W is the length in the direction of wave propagation (X-axis),
and b is the width in the Z-direction. Different colors indicate different out of plane displacements. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)



Fig. 4. Schematic of a confined membrane fluctuating between two rigid plates.
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(k) and the wave vector k (Eqs. (4), (5), and (6), respectively), they all essentially follow a power law with different exponents
for k.
2.2. Fluctuation spectrum of a confined membrane

The fact that a membrane fluctuating close to adjacent surfaces, such as in a multilayer system, experiences an effective
repulsive pressure arising from confinement was first introduced by Helfrich (1978). The commonly used model can be
represented by a simpler problem of modeling the fluctuations of a single membrane constrained by two rigid plates, as
shown in Fig. 4. Contrary to an unconfined membrane, there is a constraint on the out-of-plane deflection h x y,( ) that

d h x y d, 8− ≤ ( ) ≤ ( )

where the rigid plates are separated by a distance d2 . Recognizing the difficulty of imposing this constraint inequality, many
researchers (Radler et al., 1995; Gov et al., 2003; Merath and Siefert, 2007; Farago, 2008; Freund, 2012) proposed a ‘soft
constraint’ to replace Eq. (8). Specifically, it is assumed that the net result of the confinement is that the membrane
experiences an effective harmonic potential that can be introduced as an additional term in the Hamiltonian. This modifies
Eq. (1) to

b h x h x dx
1
2 9

W

0

2 2∫ κ γ= [ ( ″( )) + ( )] ( )

where γ is a constant that accounts for the confinement. Thus the mean square fluctuation spectrum becomes

A k
k T

bW k 10
B2

4κ γ
〈 ( )〉 =

( + ) ( )

It is evident that the effect of γ can be ignored for small wavelength. However, at long wavelength or small k, γ is the
dominant term and the fluctuation spectrum becomes independent of k. This is represented in Fig. 5 which plots Eq. (10).
This implies that the repulsive force between fluctuating membranes arising from the steric interactions inhibits their
fluctuations especially in the long wavelength modes. This correlation between repulsive force and suppression of
fluctuations also appears in the entropic interaction between solid–liquid interfaces (Hoyt et al., 2001) and crystalline
membranes such as bilayer graphene (Zakharchenko et al., 2010). Thus, we conclude that membranes and interfaces whose
free (unconstrained) fluctuations follow Eq. (4) or Eq. (5) exhibit a suppression of long wavelength fluctuations under
confinement owing to the repulsive nature of entropic interactions. In the following sections, we examine the entropic
interaction and effect on fluctuations of multiple CTBs, or in general, interfaces whose free fluctuations follow Eq. (6).
Fig. 5. Plot of the fluctuation spectrum A k2〈 ( )〉 with respect to wave vector k for a free (unconstrained) membrane (solid black line), and a membrane with
confinement (dotted blue line). This plot is a representation of Eq. (10) and does not represent a real simulation. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)



Fig. 6. Atomistic structure of a nanotwinned specimen showing the crystallographic orientation. Equally spaced CTBs separated by distance d are shown by
red colored atoms. The rest of the face-centered-cubic atoms are shown in blue color. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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3. Thermal fluctuations of multiple twin boundaries

We first present our molecular dynamics simulations that examine the thermal fluctuations of multiple, parallel CTBs as
a function of the twin boundary spacing.

3.1. Simulation method

The nanotwinned structures were modeled by way of molecular dynamics simulations using LAMMPS (Plimpton, 1995).
All simulations were performed on Cu using the embedded-atom-method (EAM) interatomic potential developed by Mishin
et al. (2001). As shown in Fig. 6, the specimenwas oriented along the [112¯ ], [111¯ ¯], and [110¯ ¯ ] crystallographic directions. Thus,
the Y-direction was aligned normal to the plane of the twin boundaries. The simulation cell dimensions in the lateral (X and
Z) directions were W 56 nm≈ , and b 1.9 nm≈ , with periodic boundary conditions applied in all directions. Since the length
in the Z-direction is much smaller than that in the X-direction (b W⪡ ), fluctuations along the Z-direction can be ignored. Thus
the problem can be regarded as quasi-one-dimensional. The CTB spacing was varied from 0.6 nm to 12 nm. As shown in
Fig. 7, each specimen with a different CTB spacing had a different height in the Y-direction since the number of CTBs was
held fixed at N¼4 (including one CTB located at the top/bottom end of the specimen due to periodicity).

The simulation cell was first relaxed at zero temperature using energy minimization to obtain an equilibrium config-
uration. Then the structure was equilibrated at 800 K for 10 ps under the NPT ensemble in order to allow for thermal
expansion and to relax the thermal stresses in all directions. This was followed by equilibration for 0.5 ns under the NVT
ensemble using the Nose–Hoover thermostat. The fluctuation spectrum for one of the CTBs was then extracted from the
equilibrium simulations. The details of computing the fluctuation spectrum of a twin boundary using molecular dynamics
simulations are described in our previous work (Chen and Kulkarni, 2013).

3.2. Simulation results

Fig. 8 shows the variation of the fluctuation spectrum of a CTB as a function of the wave vector k in the presence of
multiple parallel CTBs. For clarity, only the simulation results for 0.6 nm, 1.8 nm, and 3.0 nm twin boundary spacings are
shown. We first observe that in the presence of adjoining CTBs, the long wavelength fluctuation modes of CTBs are en-
hanced. This is in sharp contrast to other interfaces discussed earlier which exhibit a suppression of fluctuations. We further
note that as the twin boundary spacing d decreases, more fluctuation modes are affected (and enhanced). For example, for a
twin boundary spacing of 0.6 nm, the fluctuation with wavelength greater than 4 nm is amplified, whereas if the spacing is
3.0 nm, only the wavelengths greater than 30 nm are amplified. Examining the mean square of the out-of-plane dis-
placement in real space h2〈 〉 also yields the same trend. Fig. 9 shows that as the twin boundary spacing decreases, the out-of-
plane displacements of the CTBs are enhanced. The effect of neighboring CTBs is diminished beyond a CTB spacing of 3 nm.

In order to verify whether this behavior is unique to CTBs and not a common characteristic of all solid–solid interfaces
separated by a crystalline matrix, we also performed a series of molecular dynamics simulations on specimens containing
multiple GBs, instead of CTBs, to extract the change in their fluctuations due to confinement. The simulation procedure was
similar to that described above and the specimen consisted of parallel 5 210∑ ( ) GBs with periodic boundary conditions in all
Fig. 7. Atomistic structure of a typical nanotwinned specimen with four CTB (N¼4) and different spacings d. The red atoms represent the CTBs: (a)
d¼0.6 nm, (b) d¼1.8 nm, (c) d¼3.0 nm. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)



Fig. 8. Fluctuation spectrum as a function of wave vector for different twin spacings d. The different curves have been shifted for a better comparison. Thus,
the values of A k 2〈| ( )| 〉 specified along the vertical axis do not represent the real values.

Fig. 9. Mean square out-of-plane displacement h2〈 〉 in real space as a function of twin spacing d.
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directions. The simulations were performed at 1200 K. We specifically selected this high-angle GB since it exhibits capillarity
induced fluctuations at 1200 K under unconfined conditions as represented by Eq. (5), unlike unconfined CTBs which follow
Eq. (6). As expected, Fig. 10 shows that such high angle GBs experience a noticeable suppression of the long wavelength
modes similar to fluid membranes. Thus, compared to the suppression of the fluctuation spectra of confined lipid mem-
branes, solid–liquid interfaces and general high-angle GBs due to the repulsive nature of their entropic interaction, the
obvious enhancement of the fluctuations in the case of CTBs indicates that there should exist an attractive entropic force
between CTBs. In the following sections, we seek to verify this through statistical mechanics based analysis.
4. Entropic interaction between fluctuating twin boundaries

As mentioned above, since fluid membranes are flexible and undergo large fluctuations, they exert a repulsive force on
Fig. 10. Fluctuation spectrum as a function of wave vector k for a single 5 210∑ ( ) high-angle GB (solid line), and multiple GBs (dashed line). The solid line
has a slope of �2 as expected from Eq. (5).



Fig. 11. Schematic of the continuum model for interaction between CTBs. (a) Two CTBs (solid lines) fluctuating around their equilibrium positions with
spacing d2 . The dashed lines indicate that the atomic orientations on either side of the CTBs are mirror images. (b) A pair of cosine mode fluctuations. We
use U upper M middle L lower, ,( ) ( ) ( ) to denote the three regions separated by the CTBs. (c) A sinusoidal perturbation h(x) of the CTB. Based on the model by
Karma et al. (2012), the apparent normal (out-of-plane) displacement of the CTB is caused by relative tangential displacement (indicated by arrows) of
atoms with respect to the neighboring atomic layers via lattice reorientation. (u v,+ +) and (u v,− −) denote the x and y components of the displacement field
above and below the unperturbed CTB.
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each other as they come close. Starting with the pioneering work of Helfrich (1978), this repulsive steric interaction has been
studied using the classical model of a membrane fluctuating between two rigid plates (Janke and Kleinert, 1987; Bachmann
et al., 2001; Freund, 2012, 2013; Hanlumyuang et al., 2014). In contrast to fluid membranes, the twin boundaries are se-
parated by a crystalline matrix which also undergoes deformation to accommodate the fluctuations of the neighboring
interfaces. Specifically, the out-of-plane fluctuations of the CTBs are accommodated by localized shear-coupled normal
motion which induces strain fields in the elastically deformable matrix (Chen and Kulkarni, 2013). Hence, the rigid plate
model is not suitable for this case. Instead, we begin by formulating a linear elastic boundary value problem for two
fluctuating CTBs and calculating the strain energy based on the continuum model proposed by Karma et al. (2012). We then
calculate the associated Helmholtz free energy for this system as a function of the twin boundary spacing 2d, to finally
obtain the entropic force. We note that the problem addressed here as well our approach is similar in some aspects to the
statistical mechanics based study of interaction between fluctuating dislocations by Rickman and Lesar (2001). Interestingly,
they also find that the entropic contribution to the force between dislocations at finite temperature is attractive.

4.1. Boundary value problem

Fig. 11(a) shows the schematic of two fluctuating twin boundaries (denoted by CTB-1 and CTB-2) under thermal equi-
librium with their flat configurations located at distance d above and below the x-axis respectively. Similar to our atomistic
simulations, the length in the x direction is denoted byW, and the thickness in the z direction is denoted by b and points out
of the plane of the paper. With b W⪡ , the problem is treated as quasi-one-dimensional. We describe the out-of-plane dis-
placements of the two CTBs by functions h x1( ) and h x2( ) which can be expanded in Fourier series as follows:

h x h a k x c k xcos sin ,
11ai

N

i
i

N

i i i i
1

0

1

0

∑ ∑( ) = ^ = [ ( ) + ( )]
( )= =

h x h b k x d k xcos sin ,
11bj

N

j
j

N

j j j j
2

0

2

0

∑ ∑( ) = ^ = [ ( ) + ( )]
( )= =

where N W
l0

= , l0 being the minimum lattice distance along the x direction, a a ki i≡ ( ), c c ki i≡ ( ), b b kj j≡ ( ), d d kj j≡ ( ), and k ii W
2= π

is the wave vector. The first task is to obtain the strain energy, which we denote by E h h,1 2( ), induced by these two per-
turbations h x1( ) and h x2( ). For simplicity, we first consider a pair of single cosine modes, as shown in Fig. 11(b). Due to the
coupling relation, Eq. (7), the perturbations of both CTBs must induce shear strains in the adjoining grains, as shown in
Fig. 11(c). Thus, the problem of computing the strain energy of a pair of CTBs fluctuating as cosine modes is reduced to
calculating the associated strain field in the crystalline matrix. To this end, we first define three regions, namely, U (upper)
for y d≥ , L (lower) for y d≤ − and M (middle) for d y d− ≤ ≤ (Fig. 11(b)). Let u and v be the x and y components of the
displacement vector respectively. The components of the displacement field in the three regions are denoted by
u x y v x y, , ,U U( ( ) ( )), u x y v x y, , ,M M( ( ) ( )) and u x y v x y, , ,L L( ( ) ( )). Assuming isotropic linear elasticity, these fields satisfy the
following equilibrium equations:

u u v
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1 2
0, 12ax y
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x x
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R2 2
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with ν being Poisson's ratio, and R taking values U, M, and L, subject to the following boundary conditions:

u x d u x d h x a k x, , cos 13aU M
i i

1β β( ) − ( ) = ( ) = ( ) ( )

u x d u x d h x b k x, , cos 13b
M L

j j
2β β( − ) − ( − ) = − ( ) = − ( ) ( )

v x d v x d, , 13cU M( ) = ( ) ( )

v x d v x d, , 13dM L( − ) = ( − ) ( )

x d x d, , 13eyy
U

yy
Mσ σ( ) = ( ) ( )

x d x d, , 13fyy
M

yy
Lσ σ( − ) = ( − ) ( )

x d x d, , 13gxy
U

xy
Mσ σ( ) = ( ) ( )

x d x d, , 13hxy
M

xy
Lσ σ( − ) = ( − ) ( )

u x u x v x v x, , , , 0 13iU L U L( ∞) = ( − ∞) = ( ∞) = ( − ∞) = ( )

Eqs. (13a) and (13b) indicate that the normal displacements of the CTBs corresponding to h x1( ) and h x2( ) must be coupled to
relative tangential translations of the adjoining regions of the matrix and twin by h x1β ( ) and h x2β− ( ) respectively. We should
note here that the minus sign in Eq. (13b) signifies that these two CTBs have reversed crystallographic orientations of the
grains above and below. Thus, the directions of the shear coupled normal motion experienced by CTB-1 and CTB-2 are
reversed. Eqs. (13c) and (13d) enforce the continuity of the normal displacement. Eqs. (13e), (13f), (13g), (13h) are continuity
equations for the normal and shear components of the traction vector at the interfaces where the normal stress is given by

x y u x y v x y, , 2 , 14yy
R

x
R

y
Rσ λ λ μ( ) = ∂ ( ) + ( + )∂ ( ) ( )

and the shear stress is given by

x y v x y u x y, , , 15xy
R

x
R

y
Rσ μ( ) = [∂ ( ) + ∂ ( )] ( )

Finally, Eq. (13i) implements the far field boundary conditions. To circumvent the problem of directly solving the boundary
value problemwith these complicated boundary conditions, we decompose it into two simpler independent boundary value
problems using the linearity of Eq. (12). Specifically, the complete displacement field is constructed by superimposing the
displacement field induced by CTB-1 with perturbation h x a k xcosi i

1( ) = ( ) and coupling coefficient β located at y¼d, and that
induced by CTB-2 with perturbation h x b k xcosj j

2( ) = ( ) and coupling coefficient β− located at y d= − (Fig. 12). Karma et al.
(2012) obtained the following displacement field induced by a perturbation h x a k kxcos( ) = ( ) ( ) of an interface with coupling
coefficient β located by y¼0, as shown in Fig. 11(c):
Fig. 12. Decomposition of the complete displacement field due to two fluctuating CTBs into two simpler cases involving a single fluctuating CTB at different
locations.
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Translating this solution in order to obtain the displacement field induced by perturbations located at y¼d and y d= −
respectively, and then superimposing them, we have the complete displacement field as follows:
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4.2. Strain energy

Having determined the displacement field, we can now calculate the total strain energy associated with the cosine mode
perturbations of the two CTBs. Using the periodicity of the perturbations, h x1( ), and h x2( ), the strain energy is expressed as
(Karma et al., 2012)
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where Λ is introduced as the least common multiple of the wavelengths k2 / iπ and k2 / jπ of the fluctuations of CTB-1 and
CTB-2, respectively. W is assumed to be a large integer multiple of Λ. e u v,U U( ), e u v,M M( ), and e u v,L L( ) are the elastic energy
densities in the regions U, M, and L, respectively, and are given by
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where R represents U,M, and L respectively.
The integrals over x are evaluated using the orthogonal relations
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All the integrals over y can also be computed analytically. Summing up the contributions after integration over both x and y,
we obtain
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The first two terms consisting of a2i and b2j represent the contribution from the self-energy induced by independent fluc-
tuations of the CTBs. The last term consisting of the product a bi j represents the interaction energy between CTB-1 and CTB-2.
Naturally, the separation distance 2d enters the energy expression through the interaction term. We note that the Kronecker
delta implies that there is non-zero interaction energy when the wave numbers for the two CTBs are the same. This is also
consistent with the observation made by Rickman and Lesar (2001) in their study of fluctuating dislocation lines. Following
the above calculations, the strain energy associated with CTB-1 and CTB-2 undergoing sine mode fluctuations, c k xsini i( ) and
d k xsinj j( ), respectively, can also be evaluated as
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Finally, we consider the remaining two scenarios. When CTB-1 undergoes fluctuation a k xcosi i( ), and CTB-2 undergoes
fluctuation d k xsinj j( ), or when CTB-1 undergoes fluctuation c k xsini i( ), and CTB-2 undergoes fluctuation b k xcosj j( ), it can be
seen that the interaction energy is zero owing to Eq. (23). We are now ready to evaluate the total strain energy, E h h,1 2( ), as a
sum over the contribution from the self-energy and interaction energy for all the modes. Thus, evaluating the Kronecker
delta in Eqs. (24) and (25), we have
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4.3. Helmholtz free energy and entropic force

In order to obtain the Helmholtz free energy of the system, we first construct the partition function Zi for wave vector ki,
using the strain energy corresponding to the wave vector ki
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Assuming the coupling parameter 1β ≃ , and introducing the following normalization:

E
bW

A
a
W

B
b
W

C
c
W

D
d
W

K k W
d

W8 1
, , , , , ,

2
,

28i
i

i
i

i
i

i
i

i i0

2μ
ν

φ=
( − )

= = = = = =
( )



D. Chen, Y. Kulkarni / J. Mech. Phys. Solids 84 (2015) 59–71 69
we get
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Then, the partition function corresponding to the wave vector ki is obtained as
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Substituting into Eq. (27), we obtain
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Then, the Helmholtz free energy is computed as
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The entropic force can be defined as
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Given the complexity of the summation, we evaluate Eq. (36) numerically. To this end, we use material properties for copper
and other parameters that are consistent with our atomistic simulations: W¼56 nm, b¼1.9 m, μ¼56.64 GPa, T¼800 K,

0.25ν = , l0¼4.4275 Å, N¼126. l a6 /20 = (where a¼3.615 Å) is taken as the lattice parameter along the x-axis which
Fig. 13. Entropic force as a function of twin spacing 2d. The blue line is the fitting curve which shows d1/ 2 dependence. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)
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corresponds to the [112¯ ] crystallographic direction. Fig. 13 shows the entropic force between fluctuating CTBs versus twin
spacing 2d. It can be seen that the entropic interaction is indeed attractive and decays as d1/ 2:

f
d
1

372∝ −
( )

Comparing Figs. 9 and 13, it is somewhat surprising that an attractive force with a magnitude of just over 1 MPa for the
smallest CTB spacing of 0.6 nm can lead to almost a doubling of the fluctuation amplitude. Nevertheless, our theoretical
analysis confirms our previous conjecture that the entropic force between CTBs must be attractive given the enhancement
of the CTB fluctuations observed in atomistic simulations.
5. Concluding remarks

In summary, we present a study of the interaction between twin boundaries at finite temperature using molecular
dynamics simulations and statistical mechanics based on a continuum representation of a fluctuating twin boundary in an
elastic medium. Our atomistic simulations reveal that as the spacing between twin boundaries decreases, their fluctuations
are enhanced, and are almost doubled in the case of the smallest twin boundary spacing of 6 Å. This is in contrast to many
other crystalline interfaces such as high angle grain boundaries and crystal-melt interfaces, which exhibit a remarkable
suppression of fluctuations in multilayer systems due to the repulsive nature of their entropic interactions. Our theoretical
analysis of the entropic interaction of twin boundaries shows that there is indeed an attractive force between fluctuating
twin boundaries which accounts for the increase in fluctuations observed in our simulations. The rather surprising attractive
force is attributed to the characteristic of twin boundaries to exhibit shear-coupled normal motion. Since our continuum
model for a fluctuating twin boundary follows the work of Karma et al. (2012) on the fluctuations of shear coupled grain
boundaries, our findings should also be valid for grain boundaries that exhibit shear-coupled normal motion. More gen-
erally, we conclude that for shear coupled grain boundaries, the entropic interaction is dominated by the deformation of the
elastic medium between adjoining interfaces, and hence is fundamentally distinct from the entropic pressure resulting from
steric hindrance. In fact, the entropic contribution to twin boundary interaction reported here is in qualitative agreement
with the attractive nature of interaction between fluctuating dislocations at finite temperature observed by Rickman and
Lesar (2001). A possible implication of this attractive force is that twin boundaries do not exhibit spontaneous migration
away from each other, unlike high angle grain boundaries that are prone to migration. At the same time, owing to the small
magnitude, the attractive force is not strong enough to pull adjacent twin boundaries closer to annihilate them. Taken
together, our study suggests greater thermal stability of nanotwinned metals even with angstrom scale spacing of twin
boundaries compared to nanocrystalline metals that are susceptible to grain growth, especially at high temperatures. These
observations open avenues for further investigation through computations and possible experiments.
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