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Thermal Fluctuations as a
Computational Microscope for
Studying Crystalline Interfaces:
A Mechanistic Perspective
Interfaces such as grain boundaries are ubiquitous in crystalline materials and have pro-
vided a fertile area of research over decades. Their importance stems from the numerous
critical phenomena associated with them, such as grain boundary sliding, migration, and
interaction with other defects, that govern the mechanical properties of materials.
Although these crystalline interfaces exhibit small out-of-plane fluctuations, statistical
thermodynamics of membranes has been effectively used to extract relevant physical
quantities such as the interface free energy, grain boundary stiffness, and interfacial
mobility. In this perspective, we advance the viewpoint that thermal fluctuations of crys-
talline interfaces can serve as a computational microscope for gaining insights into the
thermodynamic and kinetic properties of grain boundaries and present a rich source of
future study. [DOI: 10.1115/1.4037885]
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1 Introduction

Imagine a two-dimensional (2D) fluid or solid membrane2 in
thermal equilibrium. Macroscopically, the membrane may appear
to be flat or smooth, but it exhibits undulations on the microscopic
scale that stem from the thermal oscillations of the constituent
atoms and molecules. How large these thermal effects are depends
on intrinsic material properties, and is related to the energy contri-
butions from different mechanisms causing the perturbation,
namely, out-of-plane bending and in-plane stretching (areal change
to accommodate the out-of-plane curving) of the membrane [1–3].
In the case of fluid membranes such as biological membranes, the
bending elastic energy makes the dominant contribution, whereas
in the case of solid crystalline membranes like graphene, the bend-
ing and in-plane deformation modes are coupled.

At absolute zero temperature, the equilibrium configuration is
the perfectly flat membrane which is obtained by minimization of
the energy consisting of the bending energy and surface tension
contributions. However, at nonzero temperature, there is a finite
probability of finding the membrane away from the perfectly flat
configuration given by the Boltzmann formula [4]

pi / exp ð�Ei=kBTÞ (1)

Here, pi is the probability of the ith mode, Ei is the associated
energy, kB is the Boltzmann constant, and T is the temperature.
Knowing the probability distribution then furnishes a complete
statistical description of the fluctuating membrane and enables us
to gain simplified yet valuable quantitative insights into macro-
scopic properties that emerge from the underlying complex nature
of the membranes. The statistical mechanics of membranes has
been successfully applied and extended to extract important physi-
cal parameters, such as the bending modulus and surface tension,

and understand a host of phenomena associated with 2D materials
that can have tremendous physiological and technological applica-
tions. These include the steric interaction between biological
membranes, their electromechanical coupling, entropic effects on
the morphology of crystalline membranes, and edge effects to
name a few [5–10].

We find it fascinating that the statistical mechanics of free-
standing membranes even applies beautifully to grain boundaries
embedded in three-dimensional solids. A simple notion that inter-
faces are essentially two-dimensional membranes separating dif-
ferent phases permits us to isolate the interface or grain boundary
from the bulk phases and study its out-of-plane thermal fluctua-
tions by assigning an appropriate interfacial energy. Perhaps, it is
not surprising that interfaces in crystalline solids exhibit extremely
small out-of-plane fluctuations, with amplitudes on the order of a
mere few nanometers and time-periods on the order of a few pico-
seconds. This begs the question whether the study of these fluctua-
tions might well be an exercise in futility. Our goal here is to
convince the reader that it is quite the contrary!

In fact, the statistical mechanics of fluctuating interfaces pro-
vides an attractive means to characterize grain boundaries, inter-
phase boundaries, and crystal-melt interfaces that play a vital role
in microstructural evolution, and hence in engineering materials
for various applications. It is fortuitous that the spatio-temporal
scale of the interfacial fluctuations, albeit small, makes them per-
fectly suited for monitoring via atomistic methods such as molec-
ular dynamics simulations. This furnishes a convenient window of
opportunity to probe these equilibrium fluctuations and extract
various important physical parameters. Statistical mechanics, and
in particular, the celebrated fluctuation–dissipation relation, have
enabled the theoretical analysis of the thermal fluctuations of
interfaces for decades to gain mechanistic insights into both their
equilibrium and nonequilibrium properties. Now, complemented
by large-scale atomistic simulations, they provide an even more
unique and efficient framework for a comprehensive investigation
of the mechanical behavior of crystalline interfaces to ultimately
predict the overall macroscopic material response.

In Secs. 2–4, we present a few select methods that have enabled
fresh insights into interfacial characteristics based on thermal fluc-
tuations. We demonstrate the use of statistical mechanics of
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2By the term “membrane,” we follow the physics literature and understand it to
mean a two-dimensional elastic sheet that is flexible.
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interfaces to obtain key parameters such as grain boundary free
energy and stiffness, and to treat fluctuating interfaces as Brown-
ian particles to compute their mobilities. We hope that they pro-
vide compelling evidence to support our viewpoint that thermal
fluctuations of crystalline interfaces can indeed serve as a compu-
tational microscope for gaining insights into their thermodynamic
and kinetic properties and present a rich source of future study.

2 Crystalline Interfaces as Fluctuating Elastic

Membranes

There is a rich literature on the statistical thermodynamics of
membranes which was primarily developed for soft materials—
fluid and polymerized membranes—that exhibit large fluctuations
(see monographs by Safran [1] and Nelson et al. [2]). In recent
years, the membrane theory has also been applied and extended to
study crystalline membranes such as graphene and other two-
dimensional materials [11–13], as well as crystalline interfaces,
such as grain boundaries, and solid–liquid interfaces [14–16]
based on thermal fluctuations. In particular, we refer the reader to
Refs. [11] and [13] for nice, concise reviews of these applications.

In the case of solid–solid or solid–liquid interfaces, the central
idea is that the energetic cost for the out-of-plane deformation of
the interface, which naturally involves deformation of the adjoin-
ing bulk regions, is used to construct an energy associated only
with the interface. Then, the surrounding bulk is ignored, and the
interface is regarded as a membrane with an appropriate interfa-
cial energy.

To obtain the fluctuation spectrum of an interface, we treat the
interface as a quasi-one-dimensional or ribbon-like membrane
that is thin in one direction so that the fluctuations along that axis
can be ignored (Figs. 1 and 2). As seen in Fig. 2, let b be the width
along the z-direction, W be the length along the x-direction, and
h(x) be the out-of-plane displacement or height of the interface.
Assuming that the height fluctuations are small in amplitude
(hx � 1 where hx � dh=dx), the energy cost for the fluctuation of
the interface is [14]

E ¼ 1

2
b C
ðW

0

h2
x dx (2)

which penalizes an increase in area due to curving of the interface.
Here, C denotes the interfacial stiffness and is analogous to the
surface tension in membrane theory. C ¼ cþ c00 is derived as the
sum of the interface free energy c and its second derivative with
respect to the orientation of the interface normal given by hx.
Assuming periodic boundary conditions, we can expand h(x) in
Fourier space as

hðxÞ ¼
X

k

AðkÞeikx (3)

Invoking the equipartition of energy from statistical mechanics
due to the quadratic form of the energy in Eq. (2), we obtain the
relationship between the mean square fluctuation spectrum and
the wave number

hjA kð Þj2i ¼ kBT

bWCk2
(4)

where h�i represents ensemble average. Equation (4) demonstrates
that the fluctuation spectra generated from molecular dynamics
simulations can be exploited to compute the grain boundary or
interfacial stiffness, C, as well as the interface free energy, c. The
dependence of these parameters on temperature and grain bound-
ary misorientation can also be comprehensively investigated. Pre-
vious atomistic studies have shown that the fluctuations of high
angle grain boundaries and solid–liquid interfaces in face-
centered-cubic metals indeed follow Eq. (4) [14,15]. In membrane
theory, thermal fluctuations that follow Eq. (4), implying that they
are accommodated by an increase in the membrane area, are also
known as capillary fluctuations.

However, not all grain boundaries exhibit capillarity induced
fluctuations. A recent study by Karma et al. [21] revealed that the
fluctuations of boundaries that undergo shear-coupled normal
motion, such as many low-angle grain boundaries, display a sig-
nificantly different response. Shear-coupled motion refers to the
motion of a grain boundary normal to the boundary plane when
subjected to shear deformation parallel to the boundary plane. For
these boundaries, the energetic cost for out-of-plane perturbation
arises from the localized shearing of the crystal lattices in opposite
directions at the peaks and troughs of the perturbed profile of the
grain boundary. Based on this characteristic, a modified expres-
sion for the fluctuation spectrum of shear-coupled grain bounda-
ries can be derived [21]

hjA kð Þj2i ¼ kBT

bWCb2k
(5)

Here, C is a parameter comprising the elastic constants of the mate-
rials, and b is a coupling factor defined as b ¼ vjj=vn. Introduced
by Cahn et al. [22], b characterizes the coupling relationship
between the velocity parallel to the grain boundary (vjj) and
the concomitant normal grain boundary velocity (vn) during

Fig. 1 Atomistic configuration of a fluctuating coherent twin boundary in a face-centered
cubic metal obtained from molecular dynamics. The colors represent the distance of the
atoms above (red) and below (blue) the initial flat configuration. The fluctuations have
been exaggerated for illustration. The simulations were performed in LAMMPS [17] using
the embedded-atom method (EAM) interatomic potential developed by Mishin et al. [18] for
Cu and visualized in OVITO [19]. Reproduced from Chen and Kulkarni [20].

Fig. 2 Schematic of a bicrystal representing the flat interface
by dotted lines and the fluctuating interface at finite tempera-
ture by solid lines
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shear-coupled motion. Chen and Kulkarni [20] showed that coherent
twin boundaries also follow this behavior (Eq. (5)) since they exhibit
shear-coupled normal motion up to near the melting temperature.

It is interesting that although Eqs. (4) and (5) reveal different
relationships between their fluctuation spectra hjAðkÞj2i and the
wave number k, they essentially follow a power law with different
exponents for k. Figure 3 shows the fluctuation spectra for
R5ð310Þ grain boundary and R3ð111Þ coherent twin boundary
which display 1=k2 and 1=k response, respectively. Thus, treating
the crystalline interfaces as fluctuating elastic membranes fur-
nishes an effective method for computing properties such as the
interfacial stiffness, and free energy as well as identifying the
grain boundary characteristics simply based on their fluctuating
spectra extracted from molecular dynamics simulations.

3 Crystalline Interfaces as Brownian Particles

Interface mobility is a key parameter in governing interfacial
kinetics. Taking into account the structural dependence and
environment factors, the mobility is an intrinsic property of the
interfaces that dictates the motion of interfaces, and hence, micro-
structural evolution. Under equilibrium conditions, the interface
mobility M, is the proportionality coefficient relating the exerted
pressure F and the migration or normal velocity of the interface v

v ¼ MF (6)

Exploiting this linear relation, several methods have been
developed to estimate the mobility of interfaces using various
driving forces including interfacial curvature, and applied elastic
and plastic strains. These computations are performed under large
driving forces far from equilibrium (and often far from the physi-
cal reality). Based on the thermal fluctuations of interfaces, Trautt
et al. [16] introduced a novel computational method, the so-called
interface random walk method, to capture the interface mobility
in the zero driving force limit. The approach is based on monitor-
ing the motion of the mean position of the interface which hap-
pens to be a random walk along the direction normal to the (flat)
interface. The fluctuation–dissipation relation is then invoked to
relate the diffusion coefficient associated with this Brownian
motion with the interface mobility.

Consider a fluctuating interface under periodic boundary condi-
tions with rðx; zÞ representing the in-plane position coordinate and

h(t) denoting the interface height profile at time t (Fig. 4). The
central idea is that for a fluctuating interface, the driving force in
Eq. (6) includes the capillary force, fcðr; tÞ, and the thermal noise
expressed as a Langevin force nðr; tÞ. Then, Eq. (6) becomes

v ¼ @h r; tð Þ
@t

¼ M fc r; tð Þ þ n r; tð Þ
� �

(7)

where the capillary force acts like a curvature restoring force and
is simply the interfacial stiffness multiplied by the curvature, that
is, fc ¼ Cðhxx þ hzzÞ using the small slope approximation
ðhx � 1; hz � 1Þ. The thermal noise nðr; tÞ is uncorrelated in
space and time. Integrating this relation in space and time fur-
nishes the interface “diffusion equation” in terms of the variance
h�h2ðtÞi

h�h2
tð Þi ¼ 2MkBT

A
t (8)

where A is the area of the flat interface, and D ¼ 2MkBT=A is the
diffusion coefficient. �hðtÞ denotes the mean boundary displace-
ment which is calculated as the average displacement of every
atom residing in the interface in the direction of migration at time
t.

Note that this fluctuation–dissipation relation for an interface is
analogous to the diffusion equation for a particle exhibiting
Brownian motion. Thus, the method shows that the average inter-
face position may be regarded as a Brownian particle performing
a random walk in the direction normal to the interface plane. This
provides an efficient way to estimate the mobility from atomistic
simulations. As an example, Fig. 5 shows the temporal evolution
of the variance h�h2i for the R17ð410Þ grain boundary in Ni at
1200 K. The mobility of the interface can be computed from the
slope of the curve. Furthermore, for an interface performing
Brownian motion, the probability of finding the average interface
position should follow a Gaussian distribution centered at the ini-
tial position (�hð0Þ ¼ 0) which becomes broader with time [4].
This is beautifully confirmed by molecular dynamics simulations
as shown in Fig. 6.

Since the out of plane fluctuations are small, the interface ran-
dom walk method is effective at very high temperatures, usually
above 0.8 homologous temperature, which hampers its application

Fig. 3 Power spectra of the thermal fluctuations of two interfa-
ces as a function of wave number k obtained by molecular
dynamics simulations. The red points represent R3(111) twin
boundary with a slope of 21 (shown by a solid line). The blue
points represent R5(310) high angle grain boundary with a slope
of 22 (shown by a solid line). The simulations were performed in
LAMMPS [17] using the EAM interatomic potential developed by
Mishin et al. [18] for Cu and by Ackland et al. [23] for Ni.

Fig. 4 A schematic of a grain boundary fluctuating from the
equilibrium position (indicated by the solid red line) to new
positions (indicated by the dashed red lines). The random walk
of the mean grain boundary positions (indicated by the dashed
lines) deviating from its equilibrium position (indicated by the
solid blue line) can be considered as a Brownian motion in the
migration direction.
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to physically relevant temperatures. Deng and Schuh [26,27] pro-
posed a novel postprocessing approach, which effectively
increased the accuracy and extended the application of the inter-
face random walk approach to low temperatures, up to 0.2 homol-
ogous temperature. Mobilities determined from the interface
random walk have been shown to be consistent with those
obtained from other molecular dynamics simulation approaches
based on driving forces [28,29]. Over the past decade, the inter-
face random walk method has been successfully applied to esti-
mate the mobility of impurity-free grain boundaries [16,26,27]
and boundaries with impurity atoms [30,31].

4 Impact of Defects on Interfacial Fluctuations

The approaches outlined above have mostly been used to eluci-
date the properties of pristine interfaces. However, they also open
fascinating avenues to study interactions between defects or
defective interfaces. Here, we present two example cases where
mechanistic insights can be gleaned from how interfacial fluctua-
tions are impacted by the presence of defects.

4.1 Effect of Entropic Interactions Between Fluctuating
Interfaces. The idea that a fluid membrane fluctuating close to
adjacent surfaces, such as in a multilayer system, experiences an
effective repulsive entropic pressure was first introduced in the
pioneering work of Helfrich [5]. Since then, it has been revisited
theoretically and via atomistic simulations in recent years [6,7].
Unlike an unconfined or free membrane, when membranes are
fluctuating close to each other, there is a constraint on the out-of-
plane deflection (h(x)) due to confinement, such that �d � hðxÞ
� d, where the membranes are separated by a distance 2d. A “soft
constraint” is often used to replace the inequality, in which the
membrane is subjected to an effective harmonic (constraining)
potential [32]. Applying this idea to the case of crystalline interfa-
ces that exhibit capillary fluctuations, the energy in Eq. (2)
becomes

E ¼ 1

2
b

ðW

0

C h2
x þ g h2 xð Þ

� �
dx (9)

where g is a positive constant, and the new energy term accounts
for the confinement. Following the procedure outlined before, the
modified fluctuation spectrum is obtained as

hjA kð Þj2i ¼ kBT

bW Ck2 þ gð Þ (10)

The equation reveals that the effect of g can be ignored for small
wavelength. However, at long wavelength or small k, g is the
dominant term, and the fluctuation spectrum essentially becomes
independent of k. This implies that the steric interaction between
interfaces is repulsive in nature and inhibits their fluctuations
especially in the long wavelength modes. The repulsive nature of
the entropic force and the concomitant suppression of fluctuations
have also been reported in the study of entropic interactions
between solid–liquid interfaces [15] and crystalline membranes
such as bilayer graphene [33] using atomistic simulations.

On a rather intriguing note, crystalline interfaces that have a
propensity for shear-coupled normal motion exhibit a dramatically
opposite behavior. Recent molecular dynamics simulations by
Chen and Kulkarni [34] revealed that the interaction between par-
allel coherent twin boundaries results in enhanced thermal fluctua-
tions. It is further corroborated by their theoretical analysis which
shows that fluctuating twin boundaries indeed exhibit an attractive
entropic interaction, enhancing their fluctuations. This is attrib-
uted to the characteristic of these twin boundaries to exhibit
shear-coupled normal motion. Figure 7 compares the molecular
dynamics simulation results for a high-angle R5ð210Þ grain
boundary and R3ð111Þ coherent twin boundary which show oppo-
site behavior of the long wavelength modes due to entropic inter-
actions. Interestingly, Rickman and Lesar [35] also found an
attractive force between dislocation lines when entropic effects
are taken into account.

4.2 Effect of Impurities on Interface Mobility. Impurities,
such as second-phase particles, defect clusters, or interstitial sol-
ute atoms, are known to dramatically influence grain boundary
migration, thereby impacting material properties. Following the
linear relation in Eq. (6), the influence of the impurities is cap-
tured by their impact on the mobility, often reducing it by orders
of magnitude [36]. In fact, it is generally accepted that the large
discrepancies found between mobilities predicted by modeling (of
perfect interfaces) and those estimated from experiments are due
to the drag effect of impurities invariably present in experimental
specimens.

Thermal fluctuations, and specifically, the interface random
walk approach, offer a unique way to quantify the drag effect of
impurities on grain boundary mobility, which has been difficult to
ascertain experimentally due to the lack of controlled experiments
on individual grain boundaries. Recent computational studies,
based on the interface random walk approach, by Sun and Deng

Fig. 5 Temporal evolution of the variance h�h2i for the R17(410)
grain boundary in Ni at 1200 K. The dots represent simulation
data, while the solid red line shows the linear fit of the form
h�h2i5 Dt . Computing D from this plot yields the mobility. The
simulations were performed in LAMMPS [17] using the EAM
interatomic potential developed by Baskes and co-workers
[24,25].

Fig. 6 Distribution of the average interface position �h(t) with

respect to the initial position (�h(0) 5 0) at different time intervals
obtained from molecular dynamics. The results are for the case
of a R17(410) grain boundary in Ni at 1200 K. The Gaussian form

f 5 Be2a�h
2

is fitted to the data and shown by solid lines, where
B and a are measures of the height and width of the distribu-
tion, respectively. The simulations were performed in LAMMPS
[17] using the EAM interatomic potential developed by Baskes
and co-workers [24,25].
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[30,31] show that the mobility of grain boundaries decreases by
an order of magnitude with increasing density of solute atoms seg-
regated at the interface. In fact, the mobility obtained from atom-
istic simulations is found to be consistent with the solute drag
model proposed by Cahn [37] and L€ucke and St€uwe [38] (referred
to as the CLS model) thereby validating its predictions. Thus,
thermal fluctuations-based methods proffer a unique capability to
combine analytical models such as the CLS model for solute drag
effect or the Zener model for particle pinning [39,40] developed
almost five decades ago, with large-scale atomistic simulation
methods to perform quantitative studies on the effect of impurities
on grain boundary migration.

5 Future Directions

In this perspective article, we put forward our viewpoint that
thermal fluctuations of crystalline interfaces, despite being on the
scale of a few nanometers, can serve as a computational microscope
for gaining insights into equilibrium and nonequilibrium properties
of grain boundaries. To this end, we reviewed some major develop-
ments in the area, specifically, the application of membrane theory
to obtain important interfacial parameters such as grain boundary
free energy and stiffness, and the treatment of fluctuating interfaces
as Brownian particles to compute their mobilities.

These approaches suggest exciting routes for probing a variety
of open questions germane to interfaces and critical phenomena
where interfaces are known to be key players such as creep, grain
growth, dendritic solidification among others. What is the nature of
the interaction between grain boundaries and other defects such as
dislocations or stacking faults? Addressing this question would
entail the study of the thermal fluctuations of different line and pla-
nar defects. Another compelling avenue is the study of the sliding
mobilities of grain boundaries via thermal fluctuations to establish
the structure and temperature dependence of grain boundary slid-
ing, a critical player in creep of polycrystalline materials. The inter-
face random walk method provides a fresh path for probing the
pinning effect of second-phase particles on interfacial migration
and furnishing atomistic evidence into a process that has largely
been studied via analytical models. We believe that it would be
quite revealing to explore phenomena such as void formation and

growth, and edge effects in crystalline boundaries from the stand-
point of thermal fluctuations. This could provide new atomistic
insights into void nucleation, a major phenomenon in high temper-
ature damage in materials. Physical quantities associated with indi-
vidual interfaces extracted from equilibrium fluctuations can also
serve as input for coarse-grained computational models to predict
the overall mechanical response of polycrystalline materials. A
very appealing but yet uncharted territory is to extend these thermal
fluctuations based methods to examine interfacial properties that
play a role in electromechanical-coupled phenomena which could
have wide technological applications. These fascinating avenues
support our argument that the statistical mechanics of crystalline
interfaces indeed presents a rich source for future study.
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