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Abstract

The Soret effect, as it occurs in the diffusion of solutes in crystals, is analyzed using the principle of microscopic reversibility whereby
an approach is developed for interpreting and computing Q”, the heat of transport. To compute the transport of energy during the dif-
fusion jump process, and then O, the processes of thermal activation to the transition state and the decay from the transition state are
considered to be inverses; thus the net process is reduced to the analysis of the purely mechanical decay process. Molecular statics and
dynamics are then suggested as the means to simulate the decay process and the case of carbon diffusion in body-centered cubic a-iron is
so analyzed as an example. Our results show that, for the case Q" ~ —Qp,, Where Oy, is the activation energy for carbon diffusion, this is
in agreement with experimental evidence reported in the literature. Thus both the sign and magnitude of Q" are correctly predicted. Var-
ious cases, such as the diffusion of substitutional solutes and vacancies, are also considered within our approach along with implications

for future study.

© 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Under isothermal conditions, the diffusion of atoms in
crystals is controlled by the height and local configuration
of the saddle point, i.e. the transition state; it is not important
to know the details of how the diffusing particles are acti-
vated to the saddle point. However, the thermal flux accom-
panying the particle flow is dependent on the details of the
activation process (the Soret effect), and so is the particle flow
that occurs in a temperature gradient. The two effects are
connected by an Onsager symmetry relation [1-3].

Wirtz [4] extended the theory for isothermal particle dif-
fusion to particle diffusion in a temperature gradient by
assuming that, at any point along the activation path, the
isothermal formula

e (2) 1)
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could be used for the probability of activation, where AQ is
the increment in activation energy at that point and 7 is the
temperature of the plane through that point normal to the
temperature gradient. In this formulation, the basic prob-
lem is to decide on the spatial distribution of the total acti-
vation energy, Q. what increments should @, be
considered to be made of, and precisely where are they sup-
plied? Or, stated differently, what is the appropriate tem-
perature, 7, to be used in the activation formula of Eq.
(1) for each particular increment AQ? So far it appears that
this problem has not been approached in a fundamental
way. Rather, one has essentially fitted Wirtz’s [4] descrip-
tion to account for experimental heats of transport. Thus
Shewmon [5] rationalizes the negative heat of transport
for interstitial C in a-Fe by describing the activation pro-
cess as one of activating the final octahedral site in the dif-
fusion jump to accommodate the C atom. Descriptions
picturing the C atom to be activated in its original site
sufficiently that it may jump into a neighboring site would,
according to the Wirtz theory, imply a positive heat of
transport, in disagreement with experiment. Similarly,
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Oriani [6,8] has described vacancy diffusion by an activa-
tion process involving half vacancies, which again gives fair
agreement with some observations on the heat of transport.
Oriani [6] also attempted to extend the theory to separate
the heat of transport, O, into a “lattice part”, Q;, and a
“chemical part”, O, where the first part is associated with
lattice distortions and the second part with short range
chemical binding to the host atoms at particular sites favor-
able for bond formation, and argued that the chemical con-
tribution would always be positive, i.e. O > 0, and of the
order of the chemical binding energy in the bonds broken
in the diffusion process.'

The above theories and rationalizations of experiment
are most interesting and informative about the details of
the activation process when experimental results are known.
Also, the contribution of very local chemical binding effects
to the Soret effect can be said to be fairly well understood:
clearly a bond can only be broken by an activation process
centered on the bond, and when the chemical effect is short
range, the position of activation is then quite well defined.
But when it comes to the lattice part, which is less confined
spatially, the present theories are quite lacking as they
stand. They are not able to predict a priori, from known
interatomic potentials, what should happen; they can, at
best, be used to reconstruct the activation sequence when
experimental heats of transport are known.

The basic problem is this: the theories are given in terms
of activation processes, which are comparatively rare, and
“improbable” processes, whose most probable develop-
ment is hard to predict directly. One is said to think in
terms of averages and highest probabilities; the most prob-
able realization of some event that is in itself improbable is
conceptually difficult.

However, using the theorem of time reversibility, the
problem can be recast into such a form that one can more
safely apply the sort of probability considerations one is
used to. A statement of the theorem of time reversibility
appropriate for the present purposes would run as follows:
the most probable path of the improbable event of activa-
tion is the time inverse of the most probable path of decay.”

! Oriani [6] also considered a third component, O, ascribed to the
vibrational energy residing in the local vibrational modes caused by the
presence of the diffusing atom in the host lattice. Since such localized
vibrational energy must be one part of the equilibrium enthalpy of
solution, and since the equilibrium enthalpy of transport is subtracted
from the total energy of transport to give the proper heat of transport, it
appears that this term should not be counted in the heat of transport.

2 Expressed this way, the principle of time reversibility has wide
applicability in phenomena of central interest in chemistry and materials
science, such as nucleation phenomena. For example, it follows that those
subcritical droplets which do grow up to the critical size in a supersat-
urated vapor are, on average, cooler than the ambient vapor (Feder et al.
[11]). Similarly, one could show that precipitation in a supersaturated solid
solution occurs by an initial fluctuation increasing the concentration over
some region and followed by the formation of a subcritical crystallite
which grows by consuming the excess concentration surrounding it so
that, at the critical size, the crystallite is surrounded by a uniform solution
and finally growth occurs, leading to a depleted zone around the growing
crystallite.

This is exactly the reasoning behind the Onsager [1] theory
for the famous reciprocal relations D; = Dj; in linear trans-
port equations expressed in terms of conjugate fluxes and
forces. According to this principle, one may use the follow-
ing procedure: the diffusing atom is placed at the saddle
point, and the configuration is then slightly disturbed? so
that it becomes unstable and decays by the emission of lat-
tice vibrations into the surrounding crystal. The forces
causing accelerations and emission of radiation will far
exceed the forces due to thermal vibrations until the decay
is essentially complete and the decay energy has been
spread out and become submerged in the overall thermal
energy of the lattice. Thus, to a good approximation, the
dynamics of the decay can be studied by purely mechanical
considerations, to decide such questions as which atoms
are left in highly excited vibrations after the first part of
the decay. The highly excited atoms can then be regarded
as sources radiating phonons into the surrounding crystal.
When the radiation is sufficiently symmetric, it does not
give rise to net energy transport in any one direction; the
“source” is the “center of mass” of the energy radiated.*
When in this manner the mode of decay and the energy dis-
placements in the decay have been determined, the mode of
activation is directly obtained as the inverse process, by the
principle of time reversibility. Combining the two pro-
cesses, activation and decay, the complete energy displace-
ment accompanying the diffusion jump is formed.

Various cases of diffusion will be discussed qualitatively
from this point of view. The discussion supports Shewmon’s
[5] description of C in a-Fe and y-Fe. The description of
vacancy diffusion will be extended. The heats of transport
in some systems for which measurements are not yet avail-
able will be discussed and predicted qualitatively. But, per-
haps most important, since the discussion is based on the
consideration of decay processes, the conclusions can lar-
gely be explored and revised by classical simulations on
the atom movements in decay when interatomic forces are
well enough known. Simulations conducted via either
molecular dynamics or finite temperature quasi-continuum
methods are among the possible approaches. In what fol-
lows we employ molecular dynamics simulations to describe
and verify the procedure for the most interesting case of C
diffusion in o-Fe.

A central theme of our discussion concerns the elucida-
tion of the sign and magnitude of the heat of transport
appearing (below) in Eq. (3) and the transport equations,
Eqgs. (7) and (8). For this we note the comments of Darken

3 According to standard diffusion theory, the diffusing atom has
translational energy ~k7 through the saddle point, and the host atoms
are in vibration about the saddle point configuration. However, the precise
nature of the disturbance bringing the configuration out of equilibrium is
quite immaterial for the mode of subsequent motion.

4 In some cases, asymmetries in the radiation may be important and the
center of mass of the energy radiated will then depend on how fast the
radiation loses its net momentum by collision with thermal phonons. This
may be an important effect in vacancy diffusion, where the vacancy will
throw a “shadow”, as will be discussed later in this paper.
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and Oriani [8]: “that the heat of transport is associated,
and in principle calculable from, the manner in which, on
the average, a statistical fluctuation concentrates energy
about a small region, and from the manner in which the
activation energy is dissipated into the lattice after the unit
step of diffusion”.

2. Kinetic development of the phenomenological equations

Consider an atom diffusing from A to B over a free
energy barrier, whose saddle point is at C (Fig. 1a). For
simplicity, let the plane O-O through C be a reflection
plane, so that decay from C to B can freely considered as
the inverse process of activation from A to C.

Place the diffusing atom at the saddle point and observe
it falling down to B. Suppose that the host atoms around
the saddle point are left behind in a highly excited configu-
ration; that is, they are not able to transfer all the distor-
tional energy to the diffusing atom by accelerating it as it
leaves. Some energy Q; is then radiated out from the saddle
point region. Now suppose it is radiated out symmetrically.
The diffusing atom has accelerated down to B and causes a
highly excited state about B, and an energy Q, is radiated
out from B (see Fig. 1b). Clearly

Qm = Ql + QZ (2)

when the two processes complete the relaxation.

With the decay process occurring as just described, it
follows from time reversibility that the activation from A
to C occurs by first an activation of Q, at A, exciting the
initial site, and that next the host atoms about the saddle
point are excited by Qj, sufficient to let the excited diffusing
atom get through (see Fig. 2). By a fluctuation, thermal
energy in the surrounding crystal converges on A and
excites the configuration about the initial site A by Q,; this
is the time inverse process of radiation of energy O, from
the excited destination site. The activation at C could be
described similarly.

Clearly, the net effect of energy absorption and radiation
for one atomic jump from A to B is that an energy Q- is
absorbed from the surrounding lattice at A and given back
to the lattice at B, the total effect of which is displacing the
“center of gravity” of an amount of energy Q, in the sur-

m

n

—e P o
B C A
< b

Fig. 2. Time reversed radiation pathway for the process of activation, the
time inverse of Fig. 1b.

rounding lattice by a distance b, as depicted in Fig. 2. Thus,
under isothermal conditions, a net particle current J,
would be accompanied by a heat current, Jg, in the sur-
rounding lattice

Jo=0J, 3)
where 0" = 0,, Q" is the heat of transport [9,10]. Only O,
contributes as obviously the two processes involving Q; at
C cancel each other out and give no net energy transport
into the surrounding medium.

We now derive the particle flux, following Wirtz [4] and
Shewmon [5], for the case with prevailing concentration
gradient dc/dx and temperature gradient, d7/dx (see
Fig. 3). For jump frequencies we use the simple formula

V= vpexp (;_TQ> )

-~ V_
B C A
—Q @ o—
TB=T-b/2 dT/dx Te= TA=T+b/2 dT/dx
X - b/2 X X + b/2
cB=c-b/2dc/dx c cA:c+b/2dc/dx

Fig. 3. Schematic of combined concentration and temperature gradients
over the path A-B. Jump frequencies v, and v_ are indicated to the left
and right, respectively.
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Fig. 1. Thermally activated pathway for an atom diffusing from point A to point B through saddle point at point C.
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where T is the appropriate average reservoir temperature at
the place from where the energy Q is absorbed. Jump fre-
quencies to the right and left are denoted by v, and v_,
respectively. The particle current is

Jp =b(cpvy —cav_) (5)
where

v, = Vg exp (;T%) exp <;TQC1> (6a)
V_ = vgexp (;T%) exp (;T%) (6b)

An attempted jump to the right occurs with a frequency
voexp(—0»/kTg), but only a fraction of times, exp(—Q,/
kTc), is the saddle point prepared to let the particle
through. v_ is described similarly.

Linearizing Egs. (5) and (6) and using the above result
0" = 0,, we obtain

D=—c— (7)

where D = vob? exp(—Om/kT).

Inserting Eq. (7) — after deleting the second term in it,
since we want here the mass flux under isothermal condi-
tions — into Eq. (3) and then adding an independent lattice
thermal conduction term, —xd7/dx, we obtain for the ther-
mal flux

de dr

Eqgs. (7) and (8) have the correct reciprocal relationship
(when one recalls the proper definition of the ‘““forces”
to be used) and agree in form with the general phenom-
enological equations for transport of matter and heat.
This shows that indeed the consequences of time revers-
ibility have been correctly incorporated in the model on
which the kinetic description was based. It is worthwhile
to demonstrate this consistency, and thus firmly establish
a connection to phenomenological thermodynamic the-
ory. Consistency with phenomenological theory is also
demonstrated in Appendix A, where additional insight
is provided into the form of the flux equations, i.e.
Eqgs. (7) and (8).

Consider a system composed of two compartments sep-
arated by a porous and diathermal wall of thickness d. The
compartments exchange heat and matter, but are otherwise
isolated; this implies a fixed volume so that no external
work is exerted on them. The fluxes of matter, J,, and heat,
Jg, are expressed in terms of conjugate forces via the phe-
nomenological linear relations

Jp = Lppo(—p/T) + Lpgo(1/T) (9a)
Jq= Lqpé(_ﬂ/T) +qu5(1/T) (9b)
where the JS have the meaning that positive jumps in their
arguments promote positive conjugate fluxes. Noting that

the first law of thermodynamics, for the case of either
compartment, reads as

dU = 7dS — pdV + pdn (10)
we have

l: a—S and “E_ a—S (11)
T oU Vn T on v

which provides the conjugate force vs. flux pairs used in the
flux relations. Thus

S(—p/T) = —da(%iT) and  8(1/T)
- —dw (12)
The flux laws of Eq. (9) thereby become
Jy = —Dyp a(’gi D _p, a(falx/ 7) (13a)
Jq = —Dgp a(’gi D py, a<_alx/ 7) (13b)

where D;;=d x L.
To make contact with the flux laws derived as Egs. (7)
and (8), let

U=y, +kT'lnc (14)

as in a perfect solution; py here is a reference chemical
potential.”> When using the expression for y in the flux laws,
however, we set up =0 since we note that an energy flux
Jpllo is inherent with a particle current and we are inter-
ested in only the “extra” energy current. Thus in Eq. (13)
we set yt = kTInc. Later, in the Appendix A, we re-derive
the flux vs. force (i.e. gradient) relations of Egs. (7) and
(8), starting with a standard statement of these kinetic laws
and introducing the concept of a reduced energy flux as
defined by Howard and Lidiard [7] following, e.g. deGroot
and Mazur [3]. With D;; = Dy, as follows for Onsager’s rec-
iprocity relations, we confirm that our flux relations given
in Egs. (7) and (8) indeed conform to the Onsager recipro-
cal structure.

For the sake of simplicity, it was assumed that an
excited center decays by emitting radiation symmetrically
with respect to the origin of the excited center. In this
approximation

0" <Oy (15)

the equality corresponding to Q; = 0 and Q, = Q,, and the
energy O, displaced the same distance as the diffusing atom
in one atomic jump. Oriani [6] asserts that the inequality of
Eq. (15) should hold.

However, the assumption of symmetric radiation is not
generally valid. Consider the radiation of Qy, after the dif-
fusing atom has come down on the left hand side, at B.
The presence of the diffusing atom to the left of the excited
saddle point atom introduces an asymmetry factor; if the
diffusing atom facilitates the transmission of energy, the

5 It can readily be confirmed that what is shown for the case of a perfect
solution is also true for an ideal solution for which u = py + kTIn(yc) so
long as the activity coefficient, y # y(c, 7).
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Fig. 4. Schematic of combined concentration and temperature gradients over the path A-B. Jump frequencies v; and v_ are indicated to the left and right,

respectively.

radiation will have directionality to the left, and the “center
of mass” of radiated energy comes to rest some distance, d/
2, to the left of the saddle point, the distance depending on
the interaction with the thermal phonons (see Fig. 4a). It
follows by time reversibility that the activation process
should be considered as absorption of energy from the
right, taken from a region d/2 to the right of the saddle
point, from a reservoir with the mean temperature of the
plane d/2 to the right of the saddle point (see Fig. 4b). Treat-
ing this model by the same methods as before, transport
equations of the correct general form again result, but with

d
Q*:Qz JFle (16)

It is seen that if > b, then Q" > Q,. This demonstrates that
no general significance should be attached to the inequality
of Eq. (15); although it is usually obeyed, cases not agree-
ing with the inequality may be discovered.

With strong asymmetries in the radiation, a temperature
dependence in Q" would be expected, since the heat dis-
placement due to asymmetry, say d in Eq. (16), would be
temperature dependent. As d may be either positive or neg-
ative, depending on the sense of the asymmetry, the total
Q" may either increase or decrease with increasing
temperature.

In the remaining discussion asymmetries in radiation
will be ignored as a first approximation, except in the case
of vacancy diffusion, where it appears that the asymmetry
may be significant.

3. Model considerations for decay

Consider first that the host saddle point atoms are two
balls held together by springs with a spring constant o,
and that the saddle point configuration consists of the dif-
fusing atom inserted in unstable equilibrium between the
two balls pushed aside (see Fig. 5). Consider that the two
host atoms can only move vertically, that they are stabi-
lized horizontally by atoms not shown in the figure. It
can be shown that the diffusing atom will be in contact with
the host atoms until the host atoms come in contact as indi-
cated in Fig. Sc. The potential energy of the saddle point
configuration is 2 x l/Zocrz; thus

1
Emvz + MV? = ar? (17)

From the fact that contact exists until the host atoms are
in contact there is the geometrical condition

(a) (b)

©

Fig. 5. Model scheme for the transfer of kinetic energy from host to a
diffusing atom. In (d) note that x> + y> = (R + r) and thus xdx/ds + ydy/
dr =0. With V'=d(—y)/dr and v = dx/ds, this results in the relation V/
v = x/y which is the basis for Eq. (18) below.

RV = (2Rr + )" v (18)

Thus, the fraction of the total saddle point energy car-
ried away by the diffusing atom’s kinetic energy is

AE R’

=== ’” . (19)
Out  2M(r? + 2Rr) + mR

or, in the range of most reasonable parameters,

AE R

a8 mr (20)
Qi 4Mr

with M and R typical of Fe atoms and m and r of C atoms,
say, this is a negligible fraction. With R =r and M =m,
typical of self-diffusion, the ratio is still only ~1/7. One
can conclude, then, that in this model the saddle point
atoms would be left in a highly agitated state; that they will
recoil, recompress and vibrate until the energy has radiated
via neighbors into the surrounding crystal. In a first
approximation, the energy can be said to be radiated from
the point O, the saddle point.

In actual cases, since more than two atoms usually make
up the immediate saddle point environment, the transfer of
kinetic energy to the diffusing atom will be even less than
estimated in the above model. If the diffusing particle is
charged, and the forces are not mainly contact repulsion
but due to internal electric fields, say, the situation is
entirely different. In such a case a major fraction of the sad-
dle point energy may be transferred to the diffusing ion
during decay. The above model considerations are perti-
nent when the major part of the saddle point energy can
be considered as strain energy.
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The above considerations show quite conclusively that
only a small fraction of the saddle point energy can be car-
ried as kinetic energy by the diffusing atom. However, the
situation may still be radically different from the case
described above. The above model would apply directly
when there is no severe hindrance for the diffusing atom
to reach its final position; that it may just “roll” quietly
into the final position after leaving the saddle point atoms.
The other extreme case, which will now be discussed, is that
the diffusing atom cannot move out of the saddle point
without pushing other atoms aside (see Fig. 6). Again,
the diffusing atom itself will carry negligible energy but will
transmit energy from the saddle point atoms to other
atoms; thus the excess energy liberated on decay need not
be radiated out from the original saddle point atoms alone.
Consider the model depicted in Fig. 6, which is self-explan-
atory. Again host atoms are considered to have no hori-
zonal motion. As the original saddle point configuration
shown in Fig. 6a relaxes and the original saddle point
atoms relax, the two other atoms are pushed out; the con-
figuration then goes through the symmetrical configuration
sketched in Fig. 6b with velocities as indicated by the
arrows, and then reaches the configuration sketched in
Fig. 6¢c, or more precisely a point somewhat below that
configuration because of some energy loss. The process
then reverses and the configuration returns to near the ori-
ginal saddle point configuration, then reverses again, etc.
The system is an oscillator composed of all five atoms,
and energy is radiated out symmetrically with respect to
the center of the oscillator, O, which is also the final posi-
tion of the diffusing atom, sketched in Fig. 6b, with all
atoms at rest.

The coupling of the oscillator to neighboring atoms will
make the oscillator strongly damped with a decay time of,
say, 2-3 cycles. Thus there will be some asymmetry in radi-
ation, involving roughly the energy initially radiated out in
about 1/4 cycle since the oscillator starts out from an asym-
metric configuration, as shown in Fig. 6a. However, we
shall assume that to a good approximation all the energy
can be considered to be radiated out from O.

It follows from time reversibility that activation should
be regarded as a gradual excitation of the oscillator to
higher and higher amplitudes, energy being drawn

(a) (b) (c)

i

Fig. 6. Model for a diffusing atom transmitting energy to host atoms.

symmetrically toward it O from the surrounding crystal.
The details of the activation process of this model could
be treated by the theory of stochastic processes in the man-
ner of Seeger and Donth’s treatment of activation of dislo-
cation oscillators [12]; see also Jossang et al. [13].

4. Interstitials in body-centered cubic (bec) lattices

Consider first the case of interstitials occupying octahe-
dral equilibrium positions, and with a saddle point at the
tetrahedral site. Except for some questions regarding the
saddle point, which will be commented on later, C and N
in a-Fe belong to this class. A schematic of this situation
is given in Fig. 7. At equilibrium, the interstitial, indicated
as “X”, extends the “dumbbell” of host atoms with the
octahedral site’s center labeled O. The dumbbell length
with no extension is marked with the tick marks (see
Fig. 7a). Now move the interstitial to the saddle point;
dumbbell O contracts by x, as indicated in Fig. 7b, whereas
dumbbell O' extends by y. Since T is a saddle point, the
energy released in dumbbell O must be less than the energy
put into dumbbell O’; otherwise 7" would have been the
equilibrium position. As dumbbell O is severely stretched
originally, more energy per unit length of contraction is
released in dumbbell O than is put into dumbbell O' per
unit length of expansion. It follows that

y>x (21)

This is also reasonable geometrically for the larger size
interstitials which prefer O sites. Of course, displacement
components other than those depicted in this model should
strictly speaking be included. However, the model includes
the most essential features and is, in fact, verified later via
our molecular static computations discussed in Section 7.1.

Now let the activated state collapse, the interstitial mov-
ing back to O. From energy considerations, it follows that
the interstitial must be confined to the interval 7 — 7" in the
resulting motion. Thus, the amplitude of vibration of the
central dumbbell cannot be more than ~x, while the ampli-
tude of dumbbell O’ must be >y since it will “overshoot”
contact due to the kinetic energy released during collapse
unless that energy has been transferred to dumbbell O”
extending it. This is the crucial question: will dumbbell

Fig. 7. (a) Model for a diffusing atom occupying an octahedral site in a
bec lattice. (b) Diffusing atom at a tetrahedral saddle point position.
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0" extend as dumbbell O’ contracts so that the two dumb-
bells make up the ends of an oscillator symmetric about O,
similar to Fig. 6, or can the contraction of dumbbell O’
only cause relatively small extensions in dumbbell O”, so
that the amplitudes of vibration in dumbbell 0" will be
much smaller than the amplitudes of vibration in dumbbell
0'? Geometrical considerations indicate that the motion of
two dumbbells as far separated as O’ and O” cannot be
effectively coupled by an interstitial to make up an oscilla-
tion like the one depicted in Fig. 6. It can be concluded,
then, that the amplitudes of vibration during decay will
be much smaller in dumbbell O’ than in both dumbbells
O and O". The interstitial will roughly oscillate in the inter-
val O — T while dumbbell O is executing violent vibrations
and radiating energy. Practically the entire relaxation
energy is radiated from dumbbell O’!

It might be thought that the host atoms in dumbbells O
and O’ would interfere when dumbbell O’ is in motion, and
that energy would be transferred directly in dumbbell O by
such contact and not only via the interstitial. In the
unstrained lattice the atoms in two neighboring crossing
dumbbells are in contact! However, inspecting Fig. 7a and
b, one sees that when O’ is most contracted the interstitial
must be near O, extending that dumbbell; thus the atoms
in the two dumbbells cannot get into each others way.

Thus, it seems quite well established that when the inter-
stitial decays from 7T to O, practically the entire relaxation
energy is radiated from O'. It follows by time reversibility
that when the interstitial is activated from O to T, practi-
cally the entire activation energy is supplied to dumbbell
O, preparing the final site for the interstitial in diffusion
to O in the description of Shewmon (see Fig. 8a). Shew-
mon’s [5] description of diffusion of C in a-Fe in terms of
activated processes is substantiated in detail.

Schematically, the diffusion process can be pictured as
follows in a way that is self-explanatory. The heat of
transport is obviously

0 =-0n (22)
for the diffusive jump O — T — O'.

%Qm (a) Qn

) | %O'

o
Qn (b)

@)

AR
3t :
i

Fig. 8. (a) Diffusive jump of an interstitial atom from octahedral site O to
O’ via a saddle point at a tetrahedral site 7. (b) Diffusive jump of a small
interstitial occupying a tetrahedral site at rest and transiting an octahedral
saddle point site. The jump is from 77— O — T'.

In the case of interstitials relatively smaller than C or N
in a-Fe, the equilibrium sites are the tetrahedral sites, i.e.
the T sites. Suppose the saddle point for diffusion are the
O sites, as described in Fig. 8b. In this case, except possibly
for very small interstitials, it is reasonable to assume that
the interstitial couples two neighboring crossing dumbbells
effectively to make up a symmetric oscillator similar to the
case described in Fig. 6, because in this case the two
dumbbells in question are twice as close as in the previous
case. It follows that the diffusion jump 7 — O — T sche-
matically can be pictured as in Fig. 8b. The heat of trans-
port is
0 =0, (23)

A deviation from this result would be expected to be in
the direction of a smaller heat of transport than just esti-
mated, due to less effective coupling between neighboring
dumbbells by the interstitial than assumed.

In the preceding, two extreme cases have been consid-
ered: octahedral equilibrium sites with saddle points at T’
sites and tetrahedral equilibrium sites with saddle points
at O— sites. It is well known that the equilibrium sites of
C and N in o-Fe are O sites, but there have been sugges-
tions that the 7 sites are metastable equilibrium sites and
not the saddle points for diffusion (see, e.g. McCellan
et al. [14] or Beshers [15]); ab initio calculations such as
those of Jiang and Carter [21], however, indicate that the
tetrahedral sites are indeed true saddle points. Nonetheless,
it is worthwhile to consider the implications as the analysis
is useful for discussing the later case of C interstitials in
face-centered cubic (fcc) Fe. Alternatively, for somewhat
smaller interstitials with stable 7 sites, the O sites may be
sites of unstable equilibrium. Consider the case below, with
stable O sites and metastable T sites. Reconsidering the
preceding arguments for application to the present case,
one concludes that decay from the saddle point S to O
should be discussed the same way as decay from 7 to O
was discussed and that the energy is radiated at O’, and
that similarly the metastable T site is associated with a sym-
metric oscillator. Thus, the diffusion from O to O is
described as in Fig. 9a, and

0 =-0n (24)

as before, since the processes involving Q7 cancel.

Next consider that the T sites are stable and the O sites
metastable (see Fig. 9b). Discussing along similar lines, one
concludes that

0 =0, 20, (25)

since the transport distance of Qg is twice the interstitial
jump distance. This is different from Fig. 9a; the processes
involving Q, do not cancel.

Finally, one should discuss the direct T — T jump, pos-
sibly important for the smallest interstitials with 7 sites as
equilibrium sites. The strain energy in the equilibrium sites
will be small. In diffusing, the interstitial must go through a
portal made up of three atoms midway between the two T
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Fig. 9. (a) Diffusing atom with a stable O site and a metastable 7 site.
Diffusive step is from O — T'— O'. (b) Diffusing atom with stable 7 sites
and metastable O sites. Diffusive stepis 7— O’ — T.

sites, as described by Beshers, and the saddle point energy
will consist of the strain energy opening up the portal. One
would think that this case is best illustrated by a scenario
involving co-located energy absorption and radiation and
that Q" ~ 0, i.e. that Q" would be a small fraction of Q.
This case is, however, sufficiently unsymmetrical that
detailed considerations are difficult without, say, the benefit
of reliable atomistic simulation.

The smaller interstitials usually prefer the smaller tetra-
hedral sites in fcc crystals, possibly to achieve better con-
tact for chemical bonding. It is not clear what the
diffusion path will be in this case, and quite certainly it is
asymmetrical and complex. No attempt at predicting the
heat of transport for this case will be made.

5. Interstitials in fcc crystals

The largest interstitial sites in fcc crystals are the two
equivalent families of octahedral sites <1/2,0,0> or <1/
2,1/2,1/2> and C and N in y-Fe occupy these sites. The
octahedral site in the fcc lattice is far larger than the octa-
hedral site in the bec lattice and thus typically the intersti-
tial will fit within those sites with far less distortional
energy than for the octahedral sites in bce crystals, which
fact is evidenced by the much larger solubility of C and
N in y-Fe than in o-Fe. In these particular cases we expect
a high increase in the distortional energy as the interstitial
moves into the saddle point configuration, pushing host
atoms aside, and that the interstitial in the saddle point
configuration has free access to its final position, which it
will then reach, leaving the saddle point atoms behind in
a highly activated state. The diffusion process is illustrated
atomistically in Fig. 10. One must expect that the model of

(a) (b) © o Qm

J4
o 4+ o

Qm  Qm
act decay

(100) plane

Fig. 10. (a) Diffusing atom with a stable 7 site and a metastable 7 site,
and making a direct jump to another T site. (b) The saddle point
configuration and (c) the energy radiated out in the jump process.

Fig. 5 applies and schematically the heat of transport can
be illustrated as in Fig. 10c. In this case, clearly Q" ~ 0.
In terms of activation processes, the jump occurs by ther-
mal activation of the saddle point atoms midway between
the initial and the final position, which is exactly the
description given by Shewmon [18].

The smaller interstitials usually prefer the smaller tetra-
hedral sites in fcc crystals, possibly to achieve better con-
tact for chemical bonding. It is not clear what the
diffusion path will be in this case, and quite certainly it is
asymmetrical and complex. No attempt at predicting the
heat of transport for this case will be made.

A most interesting special case is H in Pd. The hydrogen
atom actually goes into the larger octahedral sites, con-
tracting the lattice away to achieve contact with the neigh-
boring host atoms. This behavior can only be explained as
being due to strong attractive chemical forces. The reason
for octahedral occupancy might then be that bonding to
six neighbors is possible, as compared with four neighbors
in the tetrahedral sites, and that factor outweighs the larger
strain energy associated with the octahedral site’s lattice
contraction. There will be some strain energy in the saddle
point, which, as in the preceding cases, give no contribu-
tion to Q*. However, the chemical binding and the strain
energy in the equilibrium states will both contribute posi-
tively to the heat of transport. For example, consider the
interstitial in the saddle point. As it moves down towards
the final site, it contracts the lattice and achieves better
chemical binding, and a total energy ~Qp, — Qgrain (saddle
point) is released around the final site, from out which it
will be radiated. Assuming that the strain energy in the sad-
dle point is the smaller part of the energy for motion, it fol-
lows that Q" &~ Q. This result is also reasonable from the
following point of view: with the interstitial in the original
site, an activation of the saddle point atoms to open up a
passage will hardly induce the interstitial to leave the initial
site. The atoms surrounding the interstitial in the initial site
must be activated and pulled out to make the interstitial
less tightly bound to that site, and if this is the most impor-
tant part of the process of motion, Q* ~ Q,, applies.

6. Vacancies in fcc crystals
Consider a diffusing vacancy, as illustrated in Fig. 11a

and b. The strain energy in the saddle point configuration
is symmetrical about the plane p — p midway between the
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Fig. 11. (a, b) Vacancy diffusion in fcc crystals; the vacancy is marked as
“v”. The vacancy is moving to the right whereas the atom moves to the
left. Note that the vacancy casts a “shadow” to its right so that energy is
radiated toward the direction of the atom motion. This causes the heat of
transport to be positive with respect to atomic motion.

initial position O and final position O'. Since, even for large
diffusing atoms, only little kinetic energy is transferred to
that atom and brought to the final site, one might think
that the model of Fig. 6 applies. However, it is seen that,
with the vacancy in the final position, the excess energy left
behind is predominantly on the left-hand side of the
vacancy and will thus be radiated directionally out to the
left: the presence of the vacancy means that couplings that
may transmit energy towards the right are missing, in other
words the vacancy throws a shadow. It follows that in this
case the saddle point strain energy, despite being released
midway between the initial and final positions, will contrib-
ute positively to the heat of transport because it is radiated
asymmetrically (positive with respect to the direction of the
atom jump, negatively with respect to the direction of the
vacancy jump). Further, if the jumping atom gains chemi-
cal binding energy jumping into the final site, this is
another positive contribution to the heat of transport,
and also for this contribution, the shadow effect will be
important, making the contribution to the heat of trans-
port larger than it otherwise would be.

It is concluded that the heat of transport for vacancies in
fcc metals should always be positive. Also, since the energy
displacement in asymmetric radiation must depend on the
phonon—phonon interaction, one might expect a more pro-
nounced temperature dependence in the heat of transport
than in more symmetric cases. The heat of transport would
be expected to decrease with increasing temperature. More
measurements would be most illuminating.

7. Energy transport in the C-o-Fe

Molecular statics and dynamics were used to verify the
assumptions made in the above and to provide quantitative
estimates for the essential quantities, in particular for the
heat of transport. The example of C in bec a-Fe was chosen
owing to the fact that its heat of transport is quite large and
negative, both features making this example particularly
interesting. For this purpose the GULP code was used
[19] with the recently developed many-bodied Fe-Fe/Fe—
C potential of Lau et al. [20]. This potential has been fit,
via comparisons to the predictions of ab initio simulations
[21,22], to the formation energies of C defect structures,
including C interstitials. The potentials predict the most

stable interstitial positions, as well as providing an accurate
estimate of the activation energy of diffusion. Similar calcu-
lations were performed using the C—Fe interatomic poten-
tial developed by Ruda et al. [23]. For our molecular
dynamics simulations, a modified version of this potential
proposed by Ruda et al. [24] was used, which makes the
octahedral site more stable relative to the tetrahedral site
as is known from experiment and ab initio calculations
[21]. For large simulation blocks this potential predicts
an energy difference between the tetrahedral and octahe-
dral sites of AE = E\; — E,.t = 0.272 ¢V. Thus the octahe-
dral site is indeed forecast to be the more stable, although
the difference in energy is less than predicted by ab initio
calculations or experiment [21]. Aside from these modifica-
tions to the Ruda et al. potential, all other properties
remain similar to those predicted from its original form.

7.1. Molecular statics

Atomic positions were first calculated. Of immediate
interest were the relative positions of Fe atoms comprising
the “dumbells” described in Fig. 7 about the C interstitial
in the stable octahedral and saddle point tetrahedral sites.
Specifically of interest were the estimates of the relaxation
distances referred to as x and y in Eq. (21), and in the dis-
cussion surrounding it. The atom separations are listed in
the table (d) in Fig. 12. Inspection of the table in Fig. 12
shows that, for all the potentials used, indeed y > x. The
ab initio calculations of Jiang and Carter yield
y=0.278 A and x=0.099 A, respectively, whereas the
GULP potential yielded y =0.342 A and x=0.097 A.
Thus our arguments surrounding Fig. 7 are given vital sub-
stantiation. These results, which we argue underscore the
sign and magnitude of Q" in the C-a-Fe system, are not
transparent. For instance, despite the larger radius of the
tetrahedral site (0.36 A) as measured from its center to
the nearest Fe atom as compared to the radius of the octa-
hedral site (0.19 A), the stable site for C is the octahedral.
Carbon atoms as shown by ab initio calculations (e.g. [21]),
and as has been known experimentally for some time, pre-
fer the strained octahedral site since it requires that C (with
a covalent radius of 0.77 A) has only two nearest neigh-
bors, as opposed to four in the tetrahedral sites.

7.2. Molecular dynamics and energy transport

As noted above, the potentials of Ruda et al. [23,24]
were used to study the evolution of the heat produced
immediately after the decay of an interstitial carbon atom
from a tetrahedral transition site to a stable octahedral site.
In the modified potential, the Fe-Fe interactions are
described by the EAM potential developed by Mendelleev
et al. [25]; the details are reported in Refs. [23,24].

Simulations were carried out using two supercell simula-
tion blocks, each with one carbon atom and with 16 and
128 Fe atoms, respectively. Using the 17 atom (i.e. includ-
ing the C atom) supercell, we find that AE=0.176¢V,
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(oct, edge)

Present study (using GULP with potentials from Lau et al. Phys. Rev. Lett. 98:215501 (2007)

oct (face) tet oct (edge)
12 3.955 () 3.761 2.862
5-6 3.076 3.761 3.643
C-5 2.06 217 1.822
Jiang & Carter (ab initio) Phys. Rev. B 67:214103 (2003)
1-2 3.559 3.361 (3.20) 2.811(2.81)
5-6 2.797 3.353 (3.203) 3.552 (3.46)
C-5 1.98 1.82 (1.80) 1.775 (1.73)
Ruda et al. Scripta Meter. 46:349-355 (2002)
1-2 3.48 3.291
5-6 2.903 3.291
C-5 2.04 1.82

Fig. 12. Octahedral (a, c) and tetrahedral (b) sites of C in a-Fe with Fe atoms labeled 1-6. The table below shows distances between atoms comprising
what has been referred to as “dumbells” in the preceding discussion. Atom positions were computed via molecular statics. Note that in connection with
Fig. 7 and Eq. (21), the relaxation distance x would equal the difference between the separation of atoms 1 and 2 with C in its octahedral site as in (a) and
the separation of these atoms with C in its tetrahedral site as in (b). The relaxation distance y in Eq. (21) is the difference between the separations of atoms
5 and 6 with C in its tetrahedral vs. its octahedral sites. For all cases the relation y > x is substantiated, and especially so for the atom positions computed

using ab initio methods.

somewhat lower than found using larger supercells. For the
129 atom supercell, we find AE =0.209 eV. During the
decay process, this activation energy is converted to kinetic
energy, which, in turn, is reflected as a temperature rise.
After a time the system equilibrates and we expect that
the final temperature can then be estimated from n3/
2kT = AE, where the factor n reflects the number of atoms
within the cell. Our simulations indicated the final temper-
ature rises as 86 K for the smaller cell and 13 K for the lar-
ger, which are in essential agreement with the estimates
provided by the above expression. Our goal, as noted
above, was to monitor how this energy was spatially dis-
tributed during the decay process as envisioned in, for
example, Figs. 1, 4 and 8.

Standard molecular dynamics were utilized for the sim-
ulations with an implementation that maintained constant
total energy and volume. During the decay from the tet-
rahedral site to the octahedral site, the potential energy
difference is converted to kinetic energy, which was mon-
itored by following the velocities of all atoms in the vicin-
ity of the activated complex of atoms. Periodic boundary
conditions were used in all three dimensions and no scal-
ing of the atom velocities was performed. Time steps of
1 fs were used. Atom positions and velocities were ana-
lyzed every 100 time steps, i.e. every 0.1 ps. The initial
configurations of the supercells were obtained via a conju-
gate gradient energy minimization of the atomic positions,

with simultaneous minimization of the energy with respect
to the total volume of the cell. The initial temperature was
set at 7=0.1 K. This means that all Fe atoms were, in
effect, initially at rest. To initiate the decay process, the
C atom was given an initial velocity of 0.34 nm/ps
(34 m/s) directed toward the octahedral site.® With these
initial conditions, the system was followed for the next
0.5 ps, which is the time it took the C atom to reach
the octahedral site.

In the large simulation, the pattern of energy flow dur-
ing the decay process is shown in Fig. 13a—e. During the
first 0.5 ps what is seen is a pattern characterized by the
atoms in the wake of the decaying C atom acquiring most
of the increases in kinetic energy. This, in turn, implies that
energy is transported backward as expected from our qual-
itative analysis of the heat of transport. In fact, in Section 4
we argued that for C in a-Fe we expected Q" ~ —Q,,. The
results shown in Fig. 13 largely substantiate this, albeit in
qualitative form due to the approximate value of the pre-
dicted activation energy that follows from our potentials
and the size of the supercell. As estimated from the values
of kinetic energy at t = 0.5 ps, we find that approximately
70% of the activation energy has been transported back-
wards during the decay process. At longer times, of course,

6 Strictly speaking the initial velocity of the C atom would translate to
an initial temperature of approximately 3.69 K for the simulation block.
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Fig. 13. Results for the distribution of kinetic energy during the decay process within a 128 atom simulation block. (a)—(e) show a time progression of the
distribution of kinetic energy of atoms located in the immediate vicinity of the diffusing C atom. Among the atoms shown are those most intimately

coordinated with the transition site and the more stable octahedral site.

the kinetic energy becomes more uniformly distributed, i.e.
as the temperature equilibrates within the cell. In viewing
Fig. 13a—e we remind the reader that full periodic bound-
ary conditions were used, yet only the atoms most affected
during the decay process are shown. Simulations using the
17 atom cell produced very similar results, indicating that
nearly the entire activation energy was transported to the
atoms in the wake of the decaying C atom, and hence we
have not shown this for the sake of brevity. Thus, the sim-
ulations just presented appear to provide validation of the
scenario presented in Figs. 7 and 8 for the C—a-Fe system.
They also verify not only the fact, known from experimen-
tation [5,8], that Q" <0 for this system but also that
|Q"| ~ O itself. The model considerations surrounding
Figs. 7 and 8 are compelling but, given the nature of the
atomic bonding in the C-o-Fe system, the patterns of
energy flow cannot really be evaluated from the simple
pictures of atomic bonding presented there.

8. Discussion
8.1. Shewmon’s results for C in a-Fe

The basic phenomenon studied by Shewmon [18] was
concerned with the migration of iron carbides caused by
thermal diffusion in a thermal gradient. This was part of
his more general study of the important class of phenomena
concerned with second-phase redistribution in alloys sub-
ject to thermal gradients. In Ref. [18], the equilibrium con-
centration of the diffusing specie (carbon in this case) is
shown to increase monotonically with temperature. Thus,
if a carbide were positioned within a temperature gradient,
there would be a concentration gradient from the warmer to
the cooler region which would, in itself, promote atomic
carbon transport down the thermal gradient and lead to
migration of the particle down the temperature gradient
as well. Now, according to Eq. (7), for instance, with
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0" =0 or Q" > 0, that is precisely what would be expected
even taking into account the Soret effect of coupled thermal
diffusion. Note that when Q" >0 the migration is larger
than when Q" = 0, which illustrates that a Q" > 0 reinforces
the effect of the concentration gradient. However, if Q" <0,
as is the case for C diffusion in a-Fe, and if | Q"] is sufficiently
large, the reverse trend is expected. Shewmon [18] in fact
reported that trend experimentally, and his results qualita-
tively asserted that Q" < 0 and was significant in magnitude.
Wert [26] reported an activation barrier for C diffusion in o-
Fe of approximately 0.87 ¢V, a value confirmed by the ab
initio calculations of Jiang and Carter [21]. Based on these
values, if Q" =~ —Q,, as suggested by our analysis, Q" ~
5.24 x 102eV/mol (=—20 kcal/mol). Shewmon’s later mea-
surements [5] produced values closer to Q" ~ —24 kcal/mol;
reasons for this difference between his measured values and
the documented value for Q,, are as yet unclear, but the
experimental results are indeed consistent, as is the estimate
we obtain from our theoretical reasoning and our molecular
dynamics simulation.

Shewmon’s method of measurement is of interest
especially for possible future molecular dynamics simula-
tion. According to Eq. (7), if a temperature gradient
were imposed across an Fe-C alloy, a migration of C
would produce a concentration gradient until such a point

when
dlnc__gd_T (26)

dx k7% dx
at which J, —» 0. This was the experimental approach
that Shewmon [5] took. The method is amenable, how-
ever, to molecular dynamics simulation. For example, a
temperature gradient may be imposed by continually
adjusting the average kinetic energy at the ends of a rel-
atively long simulation block that initially has a uniform
concentration of C atoms. The simulation would then be
continued until a fixed concentration difference of C
develops and where J, — 0 and then where Eq. (26) is
used to estimate Q. Such simulations are planned for fu-
ture study. Our potentials provided a consistent picture
for the process of C diffusion in o-Fe, but future simula-
tions may be based on the more recently developed
potentials developed by Lau et al. [20] which provide
better consistency with the ab initio calculations of Jiang
and Carter [21] and experimentally documented activa-
tion energies [26].

8.2. General comments on the use of the Onsager reciprocity
theorem

Onsager’s reciprocity relations [1], which herein take the
form D;= Dj, have their basis in the principle of time
reversibility. The principle envisions fluxes in response to
forces as expressed in, for example, Eq. (13). Fluctuations
in energy and concentration also occur in systems in
equilibrium, and a basis of Onsager’s proof of reciprocity
is to assume that the laws that govern the decay of such

fluctuations are, in fact, those that govern macroscopic
fluxes. Thus, we write on the microscopic level

X =dyX; (27)

where x; is a flux of mass when i = p or energy when i = ¢,
and X; are the conjugate forces; the dj; are the kinetic coef-
ficients linking them. At the essence of the reciprocity proof
is (i) that the ensemble average of x,X; is

and (ii) that time reversibility implies that

(xi(0)x;(0)) = (:(0)x;(0)) (29)

where x,(0) and x;(0) are the values of x; and its rate at time
t =0 (see, e.g. Pathria [27]). Now if Eq. (27) is used in Eq.
(29) and then Eq. (28) is invoked, we find that indeed
d; = d;;. The key assumption mentioned above is that Eq.
(27), which applies to the decay of fluctuations, also applies
to macroscopic processes (i.e. d; = D;) then leads to
D;= Dj. However, at equilibrium, when there is no net
mass flow, the time average of energy density is fixed.
Now consider the process whereby a diffusing atom jumps
back and forth between a stable site and a transition state,
establishing an equilibrium between the two states. Given
that energy flows asymmetrically during both the activation
and the decay processes, both microscopic reversibility and
the fact that the time average of local energy density is fixed
lead to the conclusion that the activation and decay pro-
cesses are inverses with respect to energy flow. This is how
we have used the principles involved to construct our
approach as outlined in Section 1.

8.3. Implications for future study

We have presented a general approach for developing
a qualitative interpretation of the heat of transport, Q%,
in crystals; the qualitative assessments thus gained
include establishing the sign of Q. The approach then
prescribes a clear methodology for computing, and
thereby quantitatively establishing, the magnitude of
O"; this methodology is based on an appropriate applica-
tion of the principle of microscopic reversibility. Molecu-
lar dynamics (MD) offers a clear path for
implementation of our method. For the case of C in
a-Fe, our preliminary MD simulations indeed established
that Q" ~ —Q,,, as experiments have shown [8,5]. Oriani
[6] summarizes experimental data on other interstitial sol-
ute systems, e.g. OQ(C, y-Fe)~ —2kcal and O*(N,
o-Fe) ~ —18 kcal. Darken and Oriani [8] also discuss,
albeit in a more qualitative fashion, thermal diffusion
in a substitutional Cu—-Au alloy; in this case they also
report that Q" <0. All such cases are then candidates
for future study via MD simulation. In fact, our methods
define a relatively easy path for exploration, prior to
experimental study, of other alloy systems where inter-
atomic potentials are available with sufficient accuracy.
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Appendix A. Derivation of the flux vs. force relations

The purpose here is to provide a derivation of the flux
vs. force relations given in Egs. (7) and (8) that makes spe-
cific link with the more familiar forms of the kinetic laws
given in standard treatments, e.g. in deGroot and Mazur
[3] or Howard and Lidiard [7], and that helps explain con-
cepts such as the reduced energy flow discussed in connec-
tion with Eq. (14).

Consider a multi-component system, with » diffusing
species, and where the Latin indices 7, j or k range over
1,...,n. Also let the index ¢ denote the flux or force asso-
ciated with energy flow. Later we introduce Greek indices,
o, f, which, when involved in a summation, will range from
o, f=1,...,n, q. Begin by writing the flux vs. force rela-
tions as [3,7]

Jy = LuX; +ikqf(qa
jq == qu‘j\(,‘ —l—[:qu’q

k=1,...,n
(A.1)

The summation convention over the indices i, j and k is
employed and the “forces” are specified as
5 o(w/T) & 1 or
Xy=-12020 0 ¥ =—_ =

Ox E T Ox
Here Jg is the total energy flux as opposed to the reduced
energy flux to be introduced just below. The forces are
now defined so that, if @ is the rate of entropy production
per unit volume

(A2)

TO =JX;+J,X, (A.3)

The total energy flux includes the energy associated with
the partial molar enthalpy, /4; of the diffusing species i
and thus we seek a transformation of variables of the form

Jo=Epdp (A.4)
that renders
Ji:ji but Jq:jq—hiji (AS)

yet preserves the Onsager symmetry and the expression for
entropy production. In tensor notation we write

J=¢.J, J=L-X, L=L", J-X=J-X (A.6)
This yields
X=X, L=¢L-& (A7)

The transformation we seek is such that the components
of & are

ézxﬁ = 511; - 51qhb’ with hq =0 (Ag)

Formally we find that

X,-:)A(,-—i—h,-f(q (A9)
and, since d(;/T)/0T = —h/ T
ou;
X, = — 1 A.10
o (A.10)

This means that the force involves the gradient of y; with
respect to, say, concentration, but not temperature.

The energy flow defined by the second of Eq. (A.5) is a
reduced flow in that what is removed from the total energy
flow is the product of the enthalpy of the atomic species
and their fluxes. This, in connection with the comments
made with respect to an “excess flow” associated with the
flux given by Eq. (8), means that the excess flow is equiva-
lent to the reduced flow just computed via the transforma-
tion of Eq. (A.4) with (A.8). The transformation also leads
to

X, =X, (A.11)
and the flux vs. force relations
J - L iXi + L X

o k" (A.12)

Jq :Lini +quXq
The heats of transport are formally introduced via
Lig = L;jQ; = Ly (A.13)

the last equality due to the Onsager symmetry. When these
are included into Eq. (A.12) we obtain

Ji=Ly(X; + 0jX,)

(A.14)
Jq = Lini +quXq

where the Onsager symmetry is clear from the defining rela-
tion Eq. (A.13). Note that

Lini = LikQ}tXi = LkiXiQZ = JZQZ (A.IS)

where we mean by J{ the flux of specie k£ under strictly iso-
thermal conditions, i.e. when X, = 0. Eq. (A.14) may also
be written as

Ji=LyX;+L;0.X,
Jo= Q;FJI' + (qu _Ltij)Xq

This latter form more clearly reveals that when X, =0,
J, = 0;J;, which is how the heat of transport was originally
introduced vis-a-vis Eq. (3). We may also note that consis-
tency with Denbigh’s discussion of the heat of transport [2]
may be established by noting that he defines 0 = Q0 — H
for a single component system where Q is the total energy
transported by mass flow and H is the partial molar enthalpy
of the diffusing component. We have, in fact, created the
same effect in our definition of a reduced heat flow via the sec-
ond of Eq. (A.5). Similar relations are found in classical
works on the thermodynamics of irreversible processes,
e.g. Refs. [16,17,28], but where quite different approaches
are used to arrive at the kinetic relations and where the reader
is cautioned to understand whether the This latter form more

(A.16)
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clearly reveals that when X, = 0,J, = O;J;, which is how the
heat of transport was originally introduced vis-a-vis Eq. (3).
We may also note that consistency with Denbigh’s discus-
sion of the heat of transport [2] may be established by noting
that he defines Q* = Q — H for a single component system
where Q is the total energy transported by mass flow and
H is the partial molar enthalpy of the diffusing component.
We have, in fact, created the same effect in our definition of
a reduced heat flow via the second of Eq. (A.5). Similar rela-
tions are found in classical works on the thermodynamics of
irreversible processes, ¢.g. Ref. [16,17,28], but where quite dif-
ferent approaches are used to arrive at the kinetic relations and
where the reader is cautioned to understand whether the ther-
mal fluxes are the full flux or the reduced flux considered here.

To make specific contact with Egs. (7) and (8) we note
that for the case of one diffusing specic n =1, and we
may associate i<>p and identify L,,= Dc/kT and
k = L,,/T; this, in fact, reproduces Egs. (7) and (8).
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